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Abstract

Efficient Inference in Time Series Models with Conditional 

Heterogeneity

Guido Markus Kuersteiner 

1997

This dissertation develops new techniques to improve the efficiency of estimators where 

regressors and errors are uncorrelated, but not independent. A natural case where such 

phenomena occur are linear time series models with martingale difference innovations. 

Prominent parametric examples mainly encountered in financial econometrics include mod­

els with heterogeneity in the conditional error distribution. Estimators not taking the 

dependence between the errors and regressors into account are generally inefficient. The 

form of this inefficiency however is not related to heterogeneity in the second moments as 

is the case in standard GLS type problems. Rather it is reflected by the appearance of 

fourth order cumulant terms in the asymptotic covariance matrix. The martingale prop­

erty of the errors turns out to be the critical assumption allowing for a decomposition of 

the fourth order cumulant terms. This decomposition in turn is used to obtain a lower 

bound for the asymptotic covariance matrix.

Efficient estimators for linear time series models are developed by extending the scope 

of instrumental variable procedures to the case of conditional heterogeneity. The instru­

mental variables approach is used as a general technique to alter the statistical properties 

of the score function. Optimal instruments constructed from the reweighted innovation
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sequence are used to invert the fourth order cumulant spectrum, heuristically speaking. 

This transformation is defined such that the variance of the score process matches the 

expectation of the first derivative of the score. It is shown that the optimal IV estimator 

has the lowest variance in the class of all instruments which are linear filters of the inno­

vation process. Unobservability of the optimal instruments necessitates a semiparametric 

approach. The optimal filter is estimated from fourth order cumulants of consistent first 

stage regression residuals. The optimal instruments are then obtained by frequency do­

main techniques which convolute the filter with the residuals in a computationally efficient 

way.

While no parametric assumption for the generating mechanism leading to higher mo­

ment dependence of the errors is made, a number of well known parametric specifications 

fall into the class of processes considered. These include ARCH, GARCH and stochastic 

volatility models. Monte Carlo simulations are conducted to examine the finite sample 

properties of the instrumental variables estimator.
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1. Introduction

This dissertation analyzes the asymptotic efficiency of linear time series models when the 

innovations have conditionally heterogenous distributions. New instrumental variables 

(IV) estimators for autoregressive time series models are constructed in a way to achieve 

an efficiency gain over traditional estimators based on Gaussian criterion functions.

The time series models considered include error processes which are conditionally het- 

eroskedastic of unknown functional form. Efficiency gains are obtained without having to 

specify a model for the dependence in the errors. The setup is general enough to account 

for stylized facts in many economic time series displaying features such as thick tailed 

distributions and time dependent conditional variances.

Classical efficiency results for the quasi maximum likelihood estimator (QMLE) of the 

autoregressive parameters such as Hannan[42] depend on independence of the errors. With 

dependence in the errors the variance of the score process typically contains fourth order 

cumulant terms. This leads to a loss of efficiency of the QMLE. The asymptotic distribution 

of the QMLE in the case of martingale difference errors is shown to be a special case of 

the more general frequency domain estimators discussed in Hosoya and Taniguchi[54j and 

Keenan[59]. In the cases considered by these authors, no restrictions are imposed on the 

functional form of the fourth order cumulant spectrum of the process. Here it is shown, that 

under the martingale assumption the fourth order cumulant spectrum can be factorized. 

The factorization is used to obtain a lower bound for the covariance matrix. This result is 

the key to the construction of an optimal instrumental variables estimator.

An instrumental variables estimator using the suitably reweighted innovation process

8
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as instrument is shown to achieve the lower bound for the covariance matrix in the class 

of IV estimators with instruments that are linear filters of the errors. The distributional 

assumptions focus on the strict stationarity and ergodicity properties of the errors.

Since the optimal instruments are unobservable they need to be estimated nonpara- 

metrically. Assumptions about the generating mechanism of the volatility process or more 

generally the dependence in higher moments are replaced by smoothness assumptions for 

higher order cumulant spectra of the errors. This setup allows for the treatment of de­

pendence in higher moments as a nuisance parameter. Nonparametric estimators of this 

nuisance parameter are used to construct the optimal instruments.

The term efficiency as used throughout this dissertation refers to the lowerbound within 

the class of linear instrumental variables estimators. Restricting the class of instruments to 

linear functions of the innovation process has considerable consequences for the efficiency 

properties of the estimator. The advantage of working with this small class of instruments 

lies in the fact, that the instrumental variables estimator can be expressed in the form of 

a linear filter applied to the data. This results in extreme computational stability of the 

procedure. Simulation results in Part III indicate that the IV estimator dominates the 

Gaussian estimator even in small samples.

It is worthwhile to review more general efficiency concepts. We proceed by first dis­

cussing estimators that are asymptotically minimax in a neighbourhood of the true pa­

rameter. An alternative, weaker concept of efficiency is in terms of lower bounds for 

estimators based on moment restrictions.

9
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1.1. Efficiency Bounds for Parametric Models

Efficiency bounds for finite samples are characterized by Cramer Rao lower bounds which 

depend on the information matrix of the likelihood. This notion of efficiency can be 

extended to the information matrix of the asymptotic distribution when the class of esti­

mators is sufficiently restricted.

The most commonly used formulation is the local asymptotic minimax criterion (LAM) 

of Hajek [38] and Fabian and Hannan [28]. This definition requires an estimator to have 

lowest possible expected risk for all bowl shaped risk functions in a neighbourhood of 

the true parameter. The definition rules out superefficient estimators which have good 

properties only on a dense subset of the parameter space. The LAM property is typically 

established by showing that the local asymptotic normality (LAN) condition of Le Cam 

[16] holds (see Fabian and Hannan [28]). The construction of the lower bound assumes 

knowledge of the true data generating model and is therefore fully parametric.

For expositional purposes we introduce notation following Le Cam [17]. Let {yt }"_! 

be a discrete scalar valued time series defined on a measurable space (VLn,T n). For each 

n there is a filtration C P n^+i- We consider a sequence of two probability measures 

P/30tn and P/3nin with restrictions to !Fn,k denoted by Pp0,n,k and Ppn,n,k- The likelihood 

ratio of Ppn,n with respect to Pg0tn is defined as the Radon-Nykodym derivative on of 

the part of Ppn,n,k dominated by Pg0<n,k• We write the likelihood ratio as Ln,fc(/?n,,d0) = 

dP(3n,n,k/dPpQtn<k where reference to the two parameters emphasizes the fact that the two 

measures are indexed by points in the parameter space.

Fabian and Hannan [28] define the L A N  property for the likelihood ratio by requiring

10
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the following conditions for (/30, M n, An): An => N (0, Ao) under P/30,n probability; for any 

bounded sequence hn €  Rp 0 n = 0 Q 4- Mn 1̂ 2hn ; and

lo^dPffn<n/dPj30<n — hn An ■+■ — / i n A o h n  ► 0

in P/j0,n probability. A sequence of estimators Tn then is called regular if LA/V (/30, Mn, A„) 

holds and M n 2(Tn — /30) — An —+ 0 in P/j0,n probability. Now define the class of loss 

functions i i : I 6 £  if for all u, v €  Rp l(u) =  the set {u : l(u) <  £} is convex for

any £ 6 (0,oo), 1(0) = 0, l(u) is continuous at u =  0 and f Rp l(u)e~l/2X^ 2 du <  oo. Then 

by Fabian and Hannan [28, Theorem 6] the expected loss of any regular estimator Tn is 

bounded by

lira lim inf sup EQtnl(QnM ^ 2A ^ ^ 2(Tn -  0O)) > E N(0J }l(u)
K~°°

where Ej\r(ojp)l(u) = (2tt)~P/'2 l(u)e~l^2X̂ 2 du and Qn is any sequence of orthogonal

matrices.

If we assume a parametric structure for the time series model then we can apply 

arguments in Phillips [80]. Let yt be generated by

Ut = m t(/3) + e t

where nit(P) is P n,t-i measurable and e{ is a martingale difference sequence. For a uni­

variate AR(p ) model for example, mt(@) =  0\Vt-i +  ... -f- Ppyt-p • The key assumption

11
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here is that et is not iid. The conditional density of £t therefore depends on the whole 

innovation sequence in general. It is then convenient to express the log likelihood ratio as 

a telescoping sum using the fact that

L n W M  =  {Ln/ L n- i ) ~ - { L l /L*)

i.e. log£«(/?!,£„) =  J2k=il°S(M P i,Po)/Lk-i(l3 i,Po)).U sm gthedefim tiono{Lrl(Pl ,3o)

the ratio of likelihoods is easily recognized as a ratio of conditional densities since

Correspondingly we can, as in Phillips [80], define the likelihood ratio for a model 

parametrized by 0  as log f n^  =  ^  log fp(yk |yfc-i. - - y\ )• The score process can be written 

as

By the chain rule Vn{0) is Vn{0) =  n-1/2 Yl(drnk /d 0 )(d /d m k) log fp(yk\yk- \  • - -yi) 

where (dm k/ d 0 ) is P n,t-\ measurable and (d /dm k) log fpiyklVk-i • • • yi) is a martingale 

difference sequence under the P^ n measure. The matrix conditional quadratic variation 

process of log f n$  can then be written as

Bn(0) = - V z k(0)Zk(0)'hk(0) 
n £—'

with Zk(0) =  dm k/d 0  and hk(0) = E{e2k\Pn k̂- i) where ek =  (d /d m k) log f 0(yk\yk- i .. .yi).

12
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Now evaluate log f n,/3n in a y/n neighbourhood of 0O such that 0 n =  0 O + n~l/2hn . 

where hn is a. bounded sequence. Then, under regularity conditions, it follows from the 

results in Le Cam and Yang [18] that the likelihood ratio can be approximated locally by 

a quadratic form (LAQ) as

logLn(/3,/30) ~  h'nB n((3o) - l/2Vn(0o) -  (l /2 )h ’nB n(0Q)hn

in P/30,n probability. Phillips [80] shows that this likelihood ratio can be embedded in a 

continuous time martingale under additional conditions. In particular if we define stopping 

times rjt such that E (rk — Tk-i\^Fn,k-i) = E(e^\Pn,k-i) a.s. in Pa0,n tben A (rfc) ~  

h'n J0Tfc S d W  — (1/2) /4 ( /0Tfc SS')hn  with S  (r) =  Zk for r k- i  < r < r k and W  a standard 

Brownian motion.

Under the stationarity and ergodicity assumptions it is also true that B n converges to 

a constant positive definite matrix if E{Zk{0)Zk{0)'hk{0)) < oo. This follows from the 

ergodic theorem. Then, by the martingale difference CLT. Vn(0o) => N(0, B (0 O)) under 

P/30,n probability with B(f30) =  E (Z k(0o)Zk(0o)'hk(0o)). Under these conditions the LAQ 

property, as far as it exists, is strengthened to LAN (see Le Cam and Young [18]).

In our context it follows from Fabian and Hannan [28, Theorem 3] that, for a model with 

the LAN property, every regular estimator Tn such that y/n(Tn — p0) — B(i3o)~l Vn(0o) =  

op(l) under Pg0tn probability is LAM, i.e. the following equality holds

lim liminf sup E(3tnl(QnMn/2B{0o)~l/2(Tn -  PQ)) =  E N 0̂J )l(u).

13
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Under additional conditions the LAN property can be exploited to construct asymptot­

ically efficient estimators where the density is unknown and estimated nonparametrically. 

This technique was introduced by Bickel [7]. Examples of such estimators in the time 

series literature include Beran [6], Swensen’s [91] adaptive estimator for autoregressive 

models and Kreiss [60] extension to the ARMA case. Linton [63] constructs an adaptive 

estimator for a regression model with ARCH error process. The common feature of these 

approaches is that they allow the unknown likelihood to be specified as a product of iid 

density functions.

In our example the conditional density fp(yk\yk-i - - - 2/i) reduces to fg(£t) if the st are 

independent. An adaptive estimator 0  for 0Q can then be constructed from a consistent 

first step estimator 0  by 0 = 0 + B (0 )~ l Vn(0) where Vn(0) = n ~ l/2 Y. f'gi^t)/}g{h)Zt{0)- 

Here f 0 (.) and f ’p(.) are nonparametric estimates of the innovation density and the first 

derivative of the innovation density and we assume B(0)  —> B (0O). Adaptiveness then 

obtains if Vn{0) — Vn{0) =  op(l) in Pg0,n probability. In the context of conditional het­

erogeneity, i.e., when E{s2\!Ft-i) =  of is not constant, adaptiveness can be achieved by 

transforming the model to =  m t(0 ) /a t + £t/<Tt- Such a transformation is feasible if 

<jt can be estimated uniformly consistently for all t and the standardized innovation £t/crt 

is iid. An example of such an estimator is developed by Linton [63].

More generally however, et is not independent of the conditioning variables even after 

standardization by ert. In this case, estimating the conditional density nonparametrically 

seems to be a less promising approach because of the potentially high dimensionality of 

the density. Under these conditions one could still perform the GLS  transformation and

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

achieve a G M M  type lower bound to be discussed in the next section. This however is 

only possible if the a t can be estimated consistently.

1.2. Efficiency Bounds Implied by Moment Restrictions

We have seen in the previous section that information matrix lower bounds depend on 

knowledge of the likelihood function. This means that the statistical model determines 

the distribution of the data completely even though the true distribution may be unknown 

to the investigator. In certain special cases the density can be estimated nonparametrically 

leading to adaptive estimators. This concept was introduced by Stein [89]. It stands for 

achieving the same efficiency bound when the density is estimated nonparametrically rather 

than known up to a finite number of unknown parameters.

Here we look at statistical models which restrict only certain moments of the distrib­

ution. In particular we assume that there is a vector of observations zt =  (yt,xt) and a 

known function m (z t,(3) e  Rp and (3 6 Rp such that

E[m(zt,(3)\xt\ = 0  (1.1)

where E  denotes integration w.r.t the true underlying distribution Fq. In the time series 

context xt contains lagged values of yt and the expectation is conditional on past informa­

tion. Levit [62] shows that estimators based on a finite number of unconditional moment 

restrictions have efficiency bounds characterized by the infimum of the information matrix 

over the class of all distributions satisfying the moment restrictions. Chamberlain [19] ob­

tains a representation theorem for semiparametric estimators. Chamberlain [20] extends

15
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Levits result to the case of conditional moment restrictions by approximating the space 

of distributions with multinomial distributions. This allows to reduce (1.1) to a finite set 

of unconditional moment restrictions. Efficiency bounds for estimators of model (1.1) are 

then characterized by the infimum of the information matrix over the class of all distrib­

utions satisfying the restriction (1.1). This efficiency bound is in general larger than the 

fully parametric bound if (1.1) is the only restriction imposed. Newey [73] shows that im­

posing additional restrictions on the error distribution such as independence or symmetry 

can lead to an efficiency bound corresponding to the full likelihood based lowerbound.

For the case where the statistical model is only restricted by (1.1) Chamberlain [20] 

shows under iid conditions that the G M M  efficiency bound for an estimator Tn for the 

parameter do is Ao =  E{Dq(x )Y,q 1(x )Dq{x ))~1 where Dq(x ) =  E(dm (zt ,PQ)/df3\x) and 

£o(r) =  E(jn(zt,0Q)Tn{zt,l3Q)'\x). As before, asymptotic efficiency is defined in the local 

minimax sense, i.e., for all bowl shaped loss functions I the following inequality holds

liminf sup EFl{y/nh^'1/2(T^ -  do)) > E N{0J )l(u) (1.2)
o° (F,0)er

where T is the set of all distributions satisfying the restrictions of the model. The argu­

ments in Chamberlain [20] show that under the assumption of independence for the error 

distribution there is a one to one mapping between the moment restrictions and the true 

distribution locally at do- As a consequence, under these restrictions, Ao corresponds to 

the semiparametric bound such that in this case (1.2) holds with equality for the efficient 

G M M  estimator.

Newey [75] reviews the literature on semiparametric efficiency bounds. Semiparamet-

16
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ric estimators achieving the bound Ao were constructed for the linear regression case by 

Robinson [81] by accounting for conditional heteroskedasticity of unknown form in a non- 

parametric way. Newey [74] considers the instrumental variables estimator

0  = a r g m i n ^  m(zt ,0 o)'a(xt)' | ^ a ( x £)a(xt)'j '*T,rn(zt , 0 Qj  a(xt j  (1.3)
0

in an iid context. The optimal instrument is a(xt) = Do(xt)Y,Ql (xt). Since the conditional 

expectations Do(xt) and Eo(x£) are unknown functions of x£ they have to be estimated 

nonparametrically. Robinson [84] treats a similar problem in a time series context but as­

sumes that m(z t , 0O) can be solved for y£ either analytically or numerically. This simplifies 

estimation of Z?o(x£). The assumptions made do however not allow for heteroskedasticity. 

A frequency domain version of an optimal instrumental variables estimator in a linear time 

series framework is considered in Robinson [83].

An alternative approach to nonparametric estimation of the instrument a(x£) has been 

investigated by Cragg [22], Chamberlain [20], Newey [73] and Hansen [46]. The approach is 

based on the fact that the conditional moment restriction (1.1) implies an infinite number 

of unconditional moment restrictions of the form E(m(zt , 0)g(xt)) =  0 where g(xt) is mea­

surable and E(g(x)2) <  oo. Chamberlain [20] shows that the optimal instrumental variables 

estimator can be approximated arbitrarily well by a G M M  estimator. A complete sequence 

of functions {yJ (x )}°l1 is defined such that for any h 6 1-2 (F) and e >  0 there cure real num­

bers a 1}..., a k such that f[h(x) — ajgj(x)]2dF(x) < e. A G M M  estimator is constructed 

from Bk(x) =  7P 0  [yi(x),....,^ (x ) ] ' and ipk(z,fi) = Bk{x)m(z,0). The estimator 0 k is 

defined as minimizing 530fc(^t,/3)T^1 ^24>k(zt,0)' with Tfe =  E[Bk(x)'£o(x)Bk (x)']. Then

17
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by the arguments in Hansen [45], under regularity conditions, y/n(/3k — j30) => iV(0, At) 

where A^1 =  E[dipk(z,P)/df3]Yk lE[dipk{Zi0)/d(3']. Chamberlain shows that At —► Ao 

as k  —► oo where the main idea of the proof is to approximate D q(x ) by projecting it 

onto {<7j(x)} . In the time series context, Hansen [46] shows existence of an approximating 

martingale difference sequence for the optimal instruments.

Time series estimators based on such martingale approximations have been developed 

by Hayashi and Sims [51], Stoica, Soderstrom, and Friedlander [90], Hansen [46] and 

Hansen and Singelton [49]. For the case of independent innovations, frequency domain 

approximations of these procedures were obtained in Hannan [41] for the stationary case 

and for the nonstationary case by Phillips [78], [79].

Hansen [47] analyzes the relationship between the G M M  variance lowerbound and the 

semiparametric lowerbound in the sense of Levit [62] and Chamberlain [19]. The setup 

is a linear vector time series with i id  Gaussian innovations where conditional moment 

restrictions are available only for a subvector. The class of all linear processes satisfying 

these restrictions forms the class of distribution functions over which the semiparametric 

bound is formed. Hansen shows that the G M M  lowerbound corresponds to the least 

informative likelihood specification. This establishes that G M M  estimators attain the 

semiparametric lowerbound in the class of Gaussian processes.

Hansen and Singelton [49] consider the non Gaussian case but retain the independence 

assumption for the innovation process. The setup is again a linear vector time series where 

conditional moment restrictions are available only for a subvector. Hansen and Singelton 

obtain explicit expressions for the optimal instrument vector and show that a GM M
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estimator based on an increasing number of lagged observations as instruments achieves 

the G M M  lowerbound. This lowerbound corresponds to the asymptotic variance of full 

system estimators based on Gaussian likelihood functions.

The general case without independence assumptions is treated in Hansen [46] where 

the existence of a lower bound for the asymptotic covariance matrix of GMM estimators 

with an infinite set of F t- i  measurable instruments is established. The setup is general 

enough to include models with conditionally heterogeneous errors. Hansen, Heaton and 

Ogaki [48] show that the G M M  efficiency bound for the conditionally heteroskedastic case 

can be achieved with a set of instruments based on the innovation sequence weighted by its 

conditional second moments. In fact this transformation reduces the innovations back to 

the case where is constant. This is the key assumption in Hannan’s treatment.

It also has to be emphasized that in general the conditional second moments are unknown 

functions depending on the entire past innovation sequence. The results in Hansen [46] 

show that this function can in principle be approximated by an infinite set of instruments. 

To this date however no feasible versions of such estimators have been constructed.

The results in this dissertation show, that efficiency gains for the conditionally het­

eroskedastic case can be achieved by restricting the instruments to the linear class. It can 

be shown that the IV estimators proposed here axe asymptotically equivalent to GMM 

procedures based on a infinite set of instruments constructed from past observations yt-k- 

Applying such a procedure literally is not feasible in any sample of reasonable size since 

it involves inversion of an n x n weight matrix. It is shown here how the problem can be 

transformed into a computationally efficient procedure.
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I V  estimators in the linear class do not attain the G M M  lowerbound under condi­

tional heterogeneity. Construction of feasible I V  estimators attaining the bound remains 

therefore an open question for research. The justification for the use of a linear class of 

instruments lies in its simplicity. This aspect is especially important for generalizations of 

the approach to more general regression models and to multivariate contexts. Empirical 

applications include hypothesis tests and confidence interval estimation. One area where 

efficiency gains from accounting for conditional heteroskedasticity are important are ra­

tional expectations models for financial markets. The I V  estimators proposed here offer 

efficiency gains without having to specify the functional form leading to heteroskedasticity. 

The simulation results in Part III indicate that estimators are sensitive to misspecifica- 

tion of these higher moment aspects of the data which underlines the need for robust 

semiparametric methods.

We turn to a discussion of alternative feasible estimators taking the conditional het­

eroskedasticity of the errors into account. An important class of procedures is fully para­

metric while more recently semiparametric and Bayesian alternatives have been suggested.

1.3. Feasible Procedures for Conditional Heteroskedasticity

Efficient estimation of regression parameters under stochastic conditional heteroskedastic­

ity was first studied by Engle[26] in his influential paper introducing the ARCH model. 

Generalizations of ARCH include GARCH (Bollerslev[9]), ARCH-M (Engle, Lilian and 

Robins[27]) and EG ARCH (Nelson[70]). ARCH specifications have been extended to mul­

tivariate models as for example in Bollerslev, Engle and Wooldbridge[10]. An asymptotic 

theory for ARCH models has been obtained by Weiss[94j. His results were extended in
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subsequent papers on GARCH(1,1) and IGARCH(1,1) specifications by Lumsdaine[64] 

and Lee and Hansen[61]. Yet as noted by Lee and Hansen[61], the asymptotic theory 

for the GARCH(p,q) class does not easily follow from their work on the special case of a 

GARCH(1,1) model.

Motivated by the study of continuous time option pricing models with changing volatil­

ity, an alternative formulation of conditionally heteroskedastic models has become popular. 

Stochastic volatility models represent the time changing variance as a separate stochastic 

process. This can be interpreted as a generalization of the ARCH model where the variance 

is restricted to be a function of the past errors in the measurement equation alone (see 

Andersen[l]). Models of this type are studied amongst others in Melino and Turnbull[67], 

Harvey, Ruiz and Shepard[50], Geweke[35] and Jacquier, Poison and Rossi[56]. Multivari­

ate extensions have been considered by Harvey, Ruiz and Shepard[50] and Boudoukh[llJ.

Inference for stochastic volatility models is complicated by the unobservability of the 

conditional variance. Estimation was first carried out by moment matching techniques as 

in Chesney and Scott[21]. Melino and Turnbull[67] introduced GMM estimation, but note 

that selection of the appropriate moments is arbitrary to some degree.

A recent approach based on the marginal distribution of the errors has been proposed 

by several authors including Danielsson and Richard[23], Geweke[35], Jacquier, Poison 

and Rossi[56], Mahieu and Schotman[66] and Shephard[86],[87]. Despite distributional 

assumptions on the volatility process, the marginal distribution of the errors is generally not 

known analytically. Yet recent developments of simulation techniques, for example Pakes 

and Pollard[77] and Geweke[36], make a numerical evaluation of the marginal distribution
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possible. The strength of the simulations based approach is that it puts inference back 

into a likelihood context where optimality properties of the estimators should hold. The 

disadvantage of the procedure, however, lies in the complete distributional assumptions 

that have to be made about the conditional moments. Computational considerations might 

also be relevant especially for multivariate generalizations.

An alternative solution is proposed by Uhlig [93] where a  Bayesian VAR with stochastic 

volatility is proposed. Conjugacy between Wishart and multivariate singular Beta distri­

butions is exploited to determine the joint posterior analytically. The advantage of the 

analytical solution is that the posterior only depends on the final stage conditional vari­

ance leading to a significant reduction in the dimensionality of the numerical integration 

problem.

Semiparametric alternatives to quasi maximum likelihood inference for the ARCH class 

were introduced by Linton[63]. It is established that these adaptive procedures are local 

asymptotic minimax as defined by Hajek[38] and Fabian and Hannan[28]. Steigerwald[88] 

extends the analysis to GARCH, EGARCH and power ARCH cases. An alternative semi- 

parametric approach is developed in Gallant and Nychka[32] and applied to financial data 

in Gallant and Tauchen[33] and Gallant and Long[34].

A common feature of the parametric and semiparametric approaches discussed so far is 

that they all specify generating mechanisms for the higher moment dependence of the error 

process. The focus of the analysis in this literature is often the volatility process itself. 

If, however, the investigator is only interested in estimating parameters in the regression 

equation, then choosing a particular parametric model for the statistical properties of the
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errors is often undesirable. In the iid  case, we typically only impose restrictions on some 

moments of the errors, rather than specifying the distribution completely. This idea is 

extended here to the case where the errors are not independent. Inference is based solely 

on quantities that can be estimated by assuming that the model of interest, i.e., the re­

gression equation, is correctly specified. As a consequence, the techniques introduced here 

differ in many ways from the literature on conditional heteroskedasticity. First, and most 

importantly, only estimation of the regression parameters is considered. The conditional 

volatility process is treated as a nuisance parameter which is handled by nonparametric 

techniques. Secondly, the inferential framework is not a likelihood approach, since we do 

not make enough assumptions to specify the data density or to estimate it nonparamet- 

rically. Neither do conditional moments enter the picture. Again, the assumptions made 

do not allow one to estimate them in a consistent way. Inference is therefore based on 

unconditional moments of the data and of estimated errors.

The procedures proposed here are similar in spirit to the semiparametric GLS and in­

strumental variables (IV) estimators of Robinson [81] and Newey [74], where no parametric 

assumptions about the form of conditional heteroskedasticity are made. However, in order 

to estimate the conditional variance, these authors have to assume independent errors. 

This assumption has precluded direct application of their techniques to the stochastic 

conditional variance case.

Hidalgo [52] relaxes the iid  assumption for the errors but has to assume instead that the 

conditional variance is a smooth function of an independent stationary process. Hansen[44] 

treats the stochastic volatility model in a semiparametric GLS framework. He assumes
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that the conditional variance process converges to a Brownian motion in the limit. Sample 

path continuity of the limit process then allows for consistent kernel estimation of the 

conditional variance.

Semiparametric GLS estimators in general require consistent estimation of the con­

ditional variance. Nelson[71] and Nelson and Foster[72] discuss conditions under which 

consistent estimation of the conditional variance is possible. An example where consis­

tency fails is a mixed jump diffusion for the volatility. More generally, consistency is likely 

to fail if there exists no continuous approximation to the volatility process. Instead, the IV 

estimators proposed here do not rely on the consistent estimation of conditional moments. 

They are constructed uniquely from unconditional moments and thereby allow for a wide 

range of possible generating mechanisms.

1.4. O rgan ization

The dissertation is organized as follows. Part I discusses efficiency bounds for the general 

case of univariate linear processes. Section 2  specifies the model and describes the parame­

ter space. Section 3 analyzes the asymptotic distribution of the Gaussian Quasi Maximum 

Likelihood estimator. Section 4 derives a lower bound for the asymptotic covariance matrix 

of the Gaussian QMLE. Section 5 shows that a class of instrumental variables estimators 

with instruments that are linear in the innovation sequence has the same lower bound for 

the covariance matrix. This fact is then used to identify the optimal IV procedure in this 

Unear class.

Part II is concerned with the implementation of the optimal IV procedure identified 

in the first part. This is done for the case when the linear time series model is an AR(p)
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process. Section 6  introduces additional restrictions on the fourth order moments of the 

innovation process in order to simplify the construction of the optimal instrument. Section 

7 obtains a time domain representation of the IV estimator. Section 8  discusses a frequency 

domain approximation and Section 9 constructs a feasible semiparametric estimator.

Part III analyzes the efficiency properties of the IV procedure for the case of an AR (\) 

model. The IV procedure is compared to full maximum likelihood procedures and to 

misspecified likelihood procedures. Simulation results are reported for a variety of specifi­

cations regarding conditional heterogeneity of the error process.

Proofs of some important lemmas are given in Appendix A while the main results of 

Parts I and II are proved in Appendices B and C.
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Part I

Efficiency Bounds

The first part of this dissertation analyzes the asymptotic distribution of estimators for the 

parameters of general univariate linear time series models. Special cases of these models 

are the A R M A (p , q) class. The innovations driving the time series model are assumed to 

be martingale difference sequences. As a consequence, the linear specification correctly 

models the conditional mean of the data.

While the martingale difference assumption results in uncorrelatedness of the inno­

vations, it generally does not imply independence. A consequence of the dependence in 

the errors is that fourth moment terms do not factor into a product of second moments. 

This has important consequences for the asymptotic distribution of linear time series mod­

els. The covariance matrix now is a function of fourth order cumulants and asymptotic 

normality depends on finiteness of these fourth moments.

In general, the asymptotic covariance matrix depends on the full trispectrum of the 

innovation sequence. Under the martingale difference assumption the trispectrum reduces 

to a bispectrum. This simplification is the key to an orthogonalization of the asymptotic 

covariance matrix.

Using the decomposition of the asymptotic covariance matrix, a matrix lower bound 

based on the Cauchy Schwartz inequality is obtained. The main result of this part is 

to show that this lower bound is a lower bound for the covariance matrix of a class of 

instrumental variables estimators. The class is defined by restricting the instruments
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to be linear functions of the innovation process. Such a restriction certainly involves a 

cost in terms of potential additional efficiency gains from nonlinear instruments. The 

justification of the procedure is based on practical considerations. It results in estimators 

which are easy to compute and weakly dominate Gaussian estimators in the sense that 

their asymptotic variance is bounded above by the variance of the Gaussian estimators on 

the whole parameter space. The asymptotic properties can be fully analyzed for parametric 

examples. This is done in Part III.

In this part, M-estimators based on orthogonality restrictions between current innova­

tions and instruments are analyzed. The discussion is at a general level and the focus is 

on the efficiency properties of the estimators. The asymptotic theory is derived based on 

high level assumptions. The implementation of these estimators is left to Part II where a 

simplified case is treated in full detail.

2. M odel Specification

We assume that we have a probability space P) with a filtration of increasing a-

fields such that T t Q T t+ 1 Q F  Vi. There is a doubly infinite sequence of random variables 

{ct} ^ _ 00 generating the filtration Ft- The innovations et are assumed to be a martingale 

difference sequence. This has important consequences for the fourth order cumulants. 

Following Brillinger [13], the 4-th order cumulant is defined as

ce..£ (tii,u 2 ,U3 ,u4) =  ^  ( - l ) p _ 1  (p -  l)!me..£ {uUl) ■ ■ (uVk) (2 .1 )
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where the sum is over all partitions of the numbers and uVi is a multi

index of all the elements in i/,-. Strict stationarity implies that one time index Uj can always 

be normalized to zero without loss of generality. By the martingale difference property 

ce..e ( u i , U 4 ) is zero if the largest index does not appear as a pair. These restrictions can 

be conveniently summarized by defining the following function

a (s ,r)  =  <

E  (e?et_|4|Ct_ jr|) for s ^  r, sgn(r) = sgn(s)

E  (St^t-s) — 0-4 f°r s = r, sgn(r) =  sgn(s) f°r r >5  € {0, ±1, ±2,...} .

0  sgn(r) =  —sgn(s)
(2 .2 )

Let a Sir =  cr (s, r) if s ^  r and a r<r =  a  (r, r) +  er4. A detailed treatment of the form of 

the fourth order cumulant spectrum under the martingale difference sequence assumption 

is contained in the proof of Corollary (3.4) in Appendix B. The sequence {e£}^;_oc is 

assumed to satisfy the following assumptions.

A ssum ption  A l.  (i) £t is strictly stationary and ergodic.

(ii) E (et | T t - 1) =  0 almost surely.

(iii) E  (ef | E t- 1 ) =  of almost surely.

(iv) E  (ef) =  tr2 < 0 0 .

(v) Ylh=i 1̂ 1 l°’(si r)| =  B  < 0 0  for k =  s and k — r.

(vi) E  (e£££_s) >a some a>  0 for all s.

R em ark  1 . Strict stationarity and ergodicity axe assumed for convenience. The theory 

could be developed without these assumptions. The critical assumptions are the martin-
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gale difference sequence assumption Al(ii) and Assumption A l(iii) which states that the 

second moments are conditionally heterogeneous. A  consequence is that terms of the form 

E (e le tsE t-r)  are nonzero for s r ^  0 and depend on s for s = r ^  0. Assumption (v) 

defines the fourth order cumulants o f £t which reduce to the function er(s.r) due to the 

martingale difference assumption (i). Assumption (vi) is not restrictive. Its only purpose 

is to guarantee that the innovation distribution does not have all its mass concentrated at 

zero.

By definition of the conditional expectation operator, at is T t- i  measurable. As­

sumption (Al) implies that ef is strictly stationary and ergodic and therefore covariance 

stationary. It should be emphasized that no assumptions about third moments are made. 

In particular this allows for skewness in the error process.

The econometrician does not observe the innovation sequence {et}^._oc directly but 

has a finite stretch of data {y£} ”= 1  which is generated by the following mechanism

OO
Vt =  (2.3)

i=o

with YIJLq \c(Pij) \ |j | 1 /2  < oo for a given /? =  /30 € We define the lag polynomial 

C {0,z) = c(0 d )zJ and impose an identifying condition c(j3,0) =  1 .

For the special case of an ARM A(p,q) process, the lag polynomial has the familiar 

rational form

C(/3,z) =  ^  (2.4)<p{z)
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with 8  (z ) =  l —0 i 2 —. . .—9qzq and <f>(z) =  1— .. .—<j>pzp and f3 =  {4>\,.. . ,  (f>p.9 \ ,.  . . 8 q).

for example under Assumption (Al), then the spectrum of yt is given by fyy((3, A) =

sistent estimation of the model it will be maintained for convenience. The remaining 

assumptions of the problem are related to specifying the parameter space in a way to en­

sure stationarity of yt. The assumptions basically require continuity of the spectral density 

fyy to prove consistency and twice continuous differentiability for asymptotic normality. 

The necessary assumptions are discussed in Hannan [42], Dunsmuir and Hannan [25], 

and Deistler, Dunsmuir and Hannan[24]. As shown in these articles, a careful distinction 

between convergence of the parameters in c((3,j) and the structural form parameters is 

needed. Consistency proofs typically establish convergence in the pointwise topology. An 

identification condition is then needed to obtain convergence in the quotient topology (see 

below). The following assumptions correspond to the assumptions in Hannan [42].

A ssum ption  B l .  Let C({3,z) = cW ij ) z 3  such that c(/3,j) is continuous in f3 for 

all j  and c((3,j) = 1 and \c(0d)\ 1.71 ^  < 00• parameter space 0  is a subset of

defined by

Let gyy(0,X) = \C(0, e,A ) | 2 . If the errors Et are weakly stationary and uncorrelated, as

2
f? 9 yy(Pi^)- It is an immediate consequence of the normalization assumption that

While it was shown by Hosoya [53] that such an assumption is not needed for con-

0  =  (/? G R d A) #  0 for |z| <  l }
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with compact closure 0 .

A ssum ption B2. Define 0o =  0  D {0  € \gyy{0, A) > 0 for A € [—7T, 7r] } and assume

that 0 O e  0 o-

A ssum ption B3. V<5 > 0 {5 ro(/3 , A) is continuous in (A,0 )  € [—7T, 7t] x 0 .

A ssum ption B4. For all 0  € 0 , Syy(/30, A) ^  9yy{(3, A) whenever 0  ^  /30.

A ssum ption B5. For a neighbourhood U o f 0 O, U C ©o, d‘2gyy{0, X)/d0d0' is continuous 

in A G [—7r, 7r] and 0  € U.

R em ark 2. Assumption (B5) is needed for the asymptotic normality result. This is also 

true for the restriction Y^jLo |c(/3, j ) | | j | ^ 2 < oo which can be relaxed to YIJLq \c(0 i -/) I < 0 0  

for the consistency proof.

R em ark 3. Assumption (B4) guarantees that the limit of the criterion function of a 

certain Gaussian estimator is uniquely minimized at 0 Q. The assumption however only 

guarantees that this is true for a certain 0O. To ensure identihcation of the class o f models 

indexed by 0  6  0 , stronger restrictions need to be imposed on the function C(0, elX). These 

restrictions are discussed in general terms in the next remark and are later specialized to 

the case where C (0 ,elX) corresponds to the class o f A R M  A models.

R em ark 4. Additional restrictions on the class o f functions C(0, elX) are needed to guar­

antee identihcation of each member in the class. Let

C0 = C  [—7r, 7r] f l  {gyy(0, A) satisfies B1-B4} .
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Assumptions (B1-B4) guarantee that gyy{0, A) E C [—7T, 7r] for all (3 E Q. A topology on 

Co can be defined in terms o f pointwise convergence o f the coefficients o f c E Co. To be 

more precise and following Ash [5, pp. 376-378] let {C,}je/. be a collection o f spaces of 

analytic functions o f the form z(/3 ,j) =  c((3, j)e lXL The product topology on Co =  Yijei Q  

has as a base all sets o f the from {C((3, elX) E Cq : c(/3:j)e lXj E Cj } and is also called the 

topology of pointwise convergence. It is the weakest topology making the projections pi 

of Cq onto Ci continuous. Then by Ash [5, theorem A3.2] for a net c ^  E Cq and c E Cq. 

then cW  —*• c iff c ^  —+ C j.  Also a map f  from a topological space 0  onto Co is continuous 

iff P i  o f  is continuous. In our case p i  o /  =  c((3,j) which is continuous in 0 by assumption 

(Bl). I f  the inverse image of an open set U C Co, f ~ l (U) is open in 0  then f  is called an 

identification map ofQ onto C q. I f f  also is injective then it is a homeomorphism and 0  and 

Co are homeomorphic.. Now let R  be an equivalence relation on 0 .  Let Q /R  be the set of 

equivalence classes such that the quotient space ofQ  on R  is Q /R . The quotient topology 

on Q /R  is the strongest topology such that the canonical projection p : 0  —► Q /R  is an 

identification. Let f  : 0  —► Co be an identification map and define the equivalence relation 

R on Q by calling 6 1 and 0 2  equivalent iff f  (91 ) = f  (0 2 ) ■ Then Q /R  is homeomorphic to 

Co (see Ash [5, theorem A3.6]).

Remark (4) shows that additional structure for the function C(/3,etX) is needed to 

construct an identification map between reduced form and structural parameters. An 

important class of functions where an identification map exists is the A R M  A  class. The 

following assumptions are univariate versions of the assumptions in Dunsmuir and Hannan 

[25, p. 345] and Deistler, Dunsmuir and Hannan [24, p. 364]. To avoid confusion it should
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be emphasized that the notation is reversed relative to these articles, i.e., 0  stands for a 

subset of MP+ 9 containing the structural form (ARM A) parameters.

A ssum ption  C l .  The parameter space 0  is defined by

0  =  {0  6  Rp+<7 10(/3, z) ^  0 for \z\ < 1,9 (P ,z) ^  0 for \z\ < 1

9 (P, z) and 0  (P, z ) have no common zeros}

A ssum ption  C2. 0  is the closure ofQ . Let

Q\  =  Q n { p e  \pp *  0 , /V ,  ^ 0 }

and 0 i  =  © 1  n  {P G Kp+<? 19 (P, z) ^  0 for \z\ < 1 } . The true parameter pQ lies in 0 i-

R em ark  5. Deistler, Dunsmuir and Hannan [24, theorem 3, lemma 1] show that 0 i  is 

open in Rp+q and dense in 0 . They also state that 0  is homeomorphic to the quotient 

topology since all equivalence classes on 0  are singletons. It follows that the same property 

holds for © 1  since ©i C 0  and the canonical projection is the identity also on 0 i-  To 

establish that the quotient topology is homeomorphic to the product topology it is therefore 

enough to show that there is an injective identification map /  : 0 i  —+ C q. For the A R M  A  

case the function f  is f  (P,z) = 0 ~l (P ,z)9 (P,z) which is clearly continuous in P € 0 . 

Deistler, Dunsmuir and Hannan [24, p. 365] show that f  has a continuous inverse such 

that 0 i and Co are homeomorphic.
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Properties of optimization estimators depend on the topological structure of the para­

meter space. While ©i is not compact it can be shown to be locally compact. A natural 

way to proceed is to equip ©i with the relative Euclidean topology. It can now be es­

tablished that if / ? i , / 3 2 €  ©i such that 3 y  ^  3 2 then there exist open neighbourhoods Ny 

and iV2 of 3 y  and 0 2 in the Euclidean topology (i.e. open spheres with constant radius) 

such that N \ ,  N 2  7^ 0 and N y  n  iV2 =  0 by the properties of W 1. Continuity of gyy{3- A) 

insures that N \  and N 2 can be chosen such that N y , iV2 C ©i. This estabhshes that 0 i is 

a Hausdorff space. Since with the Euclidean topology is locally compact it follows 

that © 1  is a locally compact Hausdorff space.

3. Properties o f  G aussian Estim ators

So far the focus of the discussion has been to specify the model to be estimated. Next a de­

finition of the Gaussian estimator is given. We introduce discrete Fourier transforms of the 

data defined as u y(A) =  HILi Vte~ltX• The periodogram is I n,yy(A) =  u)n,y(\)u>n,y(—A). 

Also let, gyy(0 ,\)  =  2n/ ct2 fyy(j3, A). Then, as in Hannan (42), we consider the estimator 

3n which minimizes

It will turn out that the estimator is still consistent under Assumption (Al) but no 

longer efficient. Consistency still holds since it depends only on the uniform convergence of 

Qn(3) and the properties of its limit. We summarize these results in the following Lemma.

Lem m a 3.1. Under Assumption (A l) and either Assumptions (B1-B4) for the case of an

unrestricted Unear process or (C1-C2) for the case o f an A R M  A specification, Qn(3) —
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6  /-«• 9g lv (f i)dX for 3110 in 9  afld for eveiy 5 > 0  G »(0) ^  I - * gll\f,\)+6dX uniformly 

in 0  6  9 . Also, 0 n 30.

P roof. The proof is the same as in Hannan [42], since yt is strictly stationary and 

ergodic. ■

While the estimator is still consistent under the more general conditions it has a differ­

ent limiting distribution. This has important consequences for statistical inference carried 

out on the basis of asymptotic approximations to the distribution of the estimators.

The following result shows how the limit distribution of the parameter estimates de­

pends on the properties of the error process in the case of higher order dependence. In this 

sense, the result applies to a very general class of time series models under nonstandard 

assumptions. The form of the asymptotic covariance matrix has the typical form of the one 

for a maximum likelihood estimator under misspecification of the distribution. It reflects 

the fact that the expectation of the squared score function is not equal to the expectation 

of the Hessian matrix. At the same time it can also be represented in a form similar to the 

asymptotic covariance matrix of an inefficient GMM estimator. This last property will be 

exploited to derive a lower bound for the covariance matrix.

Introduce the notation t](0, A) =  8  Ingyy (/3, A) / 80  and bk = J  i](0,A)e~lkXd\.

For the AR M A(p,q) model the derivatives of the log spectral density are given by

gin  gyy (0, A) _  e~lXl _  elXl 
d<f>i 0 (e~tX) 0  (elX)

OO
j [ e  + e  j

j=o 
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and

d\ngyy(P, A) _  e tXl _  elXl
dBi ~  9 (e - 'x) 9(eiX)

00

E (  - t A ( Z + j )  t A ( i + > ) \
+ e  J

j '= o

where 0 - 1  (2 ) =  Ej^=o an<̂  ^_1(2) =  E j 'lo ^ s jA -  It follows immediately that

6 fc =  6 _fc and 60  =  0. The same can be established for the more general model with 

9 yy(0,X) = \C(t3,\)\2 .

We now consider the asymptotic distribution of n l/ 2 Qn((3o). This is done in the next 

proposition.

P ro p o sitio n  3.2. Under Assumption (A l) and either Assumptions (B1-B5) or Assump­

tions (C1-C2), n l/2 Qn({30) - i  AT (0 ,5 ) , where

B = ± J \ / 3 0 ,\)rJ((30 , \ ) 'd \

+ 2  / f  (3.1)
J — IT J — TT

Here, / £2ee(A,^) is de&ned as / £2££(A,^) =  (2ir) ~ 2 EfcL- 0 0  E £ L 0o <J(fc>/)e _t(Afc+,j/) where 

<r(k,l) is de&ned in (2 .2 ).

P roof. The proof follows immediately from Lemma (A.4) since E  ll̂ fcll \k\1̂  < 0 0 . ■ 

Next we turn to the proof of asymptotic normality of the estimator $ n. Let ||.|| de­

note the Euclidean norm. Then by the consistency result from Lemma 3.1 there exist 

neighbourhoods N g  =  { /3  €  ©  : ||/3  — /?0 1! <  6 }  for 6  >  0 such that P ( j 3 n G  N g)  —► 1 .
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It is therefore possible to derive the asymptotic distribution of 0n by a component by 

component mean value expansion of the first order conditions around 0O. In particular, we 

consider as in Hannan [42]

m ^QniPn) _  n _  m dQnWo) . d2Qn(Pn) 1/2 ( ft _  g  \
0 0  ~ u ~ n 0 0  *  0 0 0 0  n \ r n Po)

where 0 n such that 0 n — /30|| < 0 n — fi0| | , which implies that 0 n 0 Q by the consis­

tency result. Using Proposition (3.2), it remains to show that

This follows directly from the consistency proof since

=  f  Inyy(X ) -^ - r g ^ (0 ,X )d X
0000  J m 0000 ™

where the convergence is a.s. uniformly on a compact subset U of 0 . Choose U such that 

0O 6  U. The desired result then follows by continuity of gyy(0o, ^)029yy (0 , X )/0000  

and the fact that 0 n -£■ 0O. Using these results we can now state the main result of this 

section.

T heorem  3.3. Let et satisfy Assumptions (A l) and let yt =  C(0Q,L)£t , where C (0.L) 

either satisfies Assumptions (B1-B5) with 0  £ Rd or C (0 ,z)  =  Q(z)/cp(z) with 0  €
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and Assumption (C1 -C2 ) holds. Define (3n = arginin^©  Qn{0) and

A  = h f _ K ^ X W o ' x ) d x ■ (3-2)

Then, yfii(j3n -  0 O) ±  N (0 ,A - lBA ~l).

The next corollary shows how the result in Theorem (3.3) relates to more general time 

series estimators as discussed in Hosoya and Taniguchi [54] and Keenan [59]. For this 

purpose, define the fourth order cumulant spectrum as

1 ° °

/ e - e ( A i ,  A 2 ,  A 3 )  =  3  C e . . e ( ' U i , U 2 , U 3 ) e - l { £ - ' = l U ; ’ A -’ } .  ( 3 . 3 )

'  '  U i , U 2 » U 3 = —OC

Following Brillinger [13], the fc-th order cumulant is defined as

ce..£ (ui,U 2 , . . . , u k) = Y ^ { ~ l)p~ l (P ~  iV-me.-e i ) - - -m £..e (nVfc), (3.4)

where the summation is over all partitions of the numbers 1 . . .  k. For example, if o, = 

(1, ‘2 ,5), then tUi = (u i ,U2 , us) and me...£ (uUi) =  E (s Ul,e U2 ,eUs) . Stationarity implies that 

only the relative time difference matters so that one time index can always be normalized 

to zero.

Keenan[59, Corollary 3.5] derives the asymptotic distribution for spectral estimators 

without the martingale difference assumption for the errors but with additional summa- 

bility assumptions for all higher order cumulants. Specializing his results to the linear 

process case leads to the asymptotic covariance matrix Q =  A ~xB A ~ l for 0, where >1 is
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as defined in (3.2) and

B  = 47r [*  t](/3q, X ) t j ( 0 q ,  A )/££ (A) dX (3.5)
J— 7T

/ 7T r7 T

/  v(0o, P )'fe ..e  (A, p, -A) dXdp.
*7T V  — 1T

The following corollary shows that the variance of the estimator in Theorem (3.3) is a 

special case of (3.5). The intuition behind this result is clear since under the martin­

gale assumption, / ££ (A) =  <r4/  (27t)2 and as will be shown in the proof of the corollary, 

2nfe..e(X,p, -A) =  l / 2 [/e2££ (A, -A) +  f £iee{p. -p)] +  f e2££(A, - p )  +  f e2se(X,p). The fact 

that for the asymptotic variance only the 0mod27r submanifold [A, — A,p,  —/j.} of [—7r, tt]4 

matters is responsible for the appearance of the term / £2ee (A, —A).

C orollary  3.4. Let B  be defined as limn_oo var f* K In,ee (A) fi(/30, A)dA  ̂ under As­

sumption (A l) and r)(P, A) is a continuous even function on [—7t, 7r] with Fourier coefficients 

bk such that YlkLi |&fc| l^l1^ 2 <  °°- Then, B can be written as

/ TT M T

/  fe..c (M, A, - p )  f](/3Q, A)f](0o, p)'dXdp,
-7T J — 7T

where f e_.e (p, A, —p) is the fourth order cumulant spectrum defined in (3.3).

P roof. See Appendix B ■

The corollary shows that the martingale assumption is the critical element in the reduc­

tion from the general case involving a fourth order cumulant spectrum to the case where 

the variance of the score process only depends on the spectral density of the squared errors.
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It is the purpose of the next section to obtain a lower bound of this covariance matrix for 

a certain class of transformations. It is then shown that these transformations are related 

to the class of instrumental variables estimators with instruments that sire linear filters of 

the innovation sequence.

4. Covariance M atrix  Lowerbound

While the most compact representation of the covariance matrix A~lB A ~ l is in terms 

of an integral of spectral density functions, more insight into the structure of the prob­

lem can be gained from a time domain representation of the matrix. Recall the defin­

ition of 6 fc =  (2tt) - 1  f] (/3, A) elkXd\. the vector of the k-th Fourier transform of the 

first derivative of the log spectral density. By Parseval’s equality, we have bkb'k =

?7 (/3, A) 77 (/3, A) dX. This also implies that =  A /  (2er2) . Further, define

the matrix

P m ~  [̂ 1 > •••> ^m]*

Then, lirnm _ 00 P ^P m =  ^  f] (0, A) 17 (0, A)' dX. Next, introduce

Urn. —

er(l, 1 ) + a 4

a(m , 1 ) cr(m, m) 4-  cr4

(4.1)

It follows that B  = 41imm_oo P^ClmPm- Thus,

A~ 1B A ~ 1 =  a4 lim (P^ ) " 1 (P^QmPm) (P ^ P m), - 1
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Before obtaining a matrix lower bound for this covariance matrix we need to investigate 

the properties of the fourth order cumulant matrix fIm. In particular, we need to establish 

that this matrix is invertible for all m. This is done in the next Lemma.

Lem m a 4.1. Let flm be deGned as in (4.1). Then, fi“ l exists for all m.

Proof. First, note that Qm is symmetric since cr{k,l) =  E{£^Et-k£t-i) — cr(l,k). Then, by 

the Shur decomposition (see Magnus and Neudecker [65, p. 16]) for all m  there exists an 

orthogonal matrix Sm such that 5mn mSm = Am, where Am is diagonal with elements A™, 

j  =  l,...,m . Now, for any xm e Rm, xm ^  0, we have x^f2mxm =  E(Y,X i,m£t£t-i) 2 > 0 

where the inequality is strict by Assumption (Al). So Qm is positive definite such that 

AJ1 > 0 Vj, m. This shows that f2m has full rank. ■

Invertibility of Qm for all m  however is not enough to show that Q.m is invertible in 

the limit. We briefly review the theory of invertible operators (see Gohberg and Goldberg 

[37, p. 65]). For two Hilbert spaces Hi and Hi denote the set of bounded linear operators 

mapping H\ into Hi by L (H \,H i). Then A £ L{H \,H i) is invertible if there exists an 

operator A- 1  £ L(H 2 ,H \)  such that A-1Ax =  x  for all x  € H \ and A A ~ ly  =  y for all 

y 6  H i. Let ker A  =  {x 6  H\ : A x  =  0} and Im A  =  {Ax : x  £ H i} . Then A  is invertible 

if ker A =  {0} and Im A =  H i.

Following Hanani, Netanyahu and Reichaw [40] we now choose H i,H i  as linear spaces 

whose points are sequences of real numbers denoted by x  =  {xi , x i , ...} and y = [yi, y i , ...} • 

Define the norms ||x||p =  (Ya  |xi|p)1/p and HxĤ , =  sup^ |x,-|. Then H  is the space of all 

bounded sequences, denoted by l°°, if H x ^  <  oo for all x € H. Similarly let lp be the 

space of all sequences that are bounded under the ||.|| norm. An operator A : Zp >— lp.
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p >  1, is now defined by the infinite dimensional matrix A  =  =  1,2,.... such that

y =  Ax G lp for all x  € lp. This can be written element by element as yi =  £3°° ai,jx j 

for all i. The operator A  is invertible if the only solution to A x  =  0 is x  =  {0,0,....} and 

Im A = lp.

Hanani, Netanyahu and Reichaw [40, Example 1] show that A may have an inverse on 

lp for p > 1 but not on l°°. Their example also shows that existence of an inverse in the 

subsystem of linear equations defined by Am = ( a i j ) , i , j  =  1,2, ...,m  does not imply the 

existence of an inverse for the infinite system. This follows from the fact that for finite 

sequences lp and Z°° are identical.

Invertibility of infinite dimensional matrices is analyzed in Hanani, Netanyahu and 

Reichaw [40], Gohberg and Goldberg [37, p. 65] and Farid [29], [30]. The conditions given 

by these authors do not readily apply to the matrix Q, =  limm Qm. We use arguments 

similar to the ones in the proof of Lemma (4.1) to establish invertibility.

Lem m a 4.2. Let Qm be deGned as in (4.1) and let Q, = limm Hm. Then fi € £(1°°,/°°) 

and fi_ 1  exists.

Proof. From Assumption (Al) it is clear that 0.x € l°° for all x  € l°°. It remains to 

show that ker fl =  0. Assume there is x  6  l°° such that x  ^  {0,0,...} and Qx = 0. Then 

also x Q x  =  0 which can be written as £ ( X ^ i  x i£t£t-i) 2 =  0- But this is only possible 

if J ]  XiEt£t-i =  0 with probability one. Now 53 x i£t€t-i =  0 a.s. if £t£t-i = 0 a.s. or the 

functions are linearly dependent a.s.

If Et- i  are linearly dependent then 3a 6  l°°, a  ^  0 such that 53 =  0 a.s.

Without loss of generality a i ^  0. If a* = 0  for all i =  2,3,... then 53a t££-i =  0 a-s -
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is trivially contradicted. Now assume a; ^  0 for at least one z =  2,3,.... such that 

et- i  =  - a f 1 a i£t-i a -s • But then £ (e t_i|.Fi_2 ) =  - a j -1  52^2°*^-* a-s- so t îat 

E(et-i\J-t-2 ) 7  ̂ 0 with positive probability. This contradicts the martingale difference 

assumption.

On the other hand if £t£t-i =  0 a.s. for all i then ef =  0 a.s. But then = 0

for all z which contradicts Assumption (Al). Therefore fix =  0 can only hold if x  =  0. 

Thus 17 is a positive definite bounded linear operator and therefore has an inverse (see 

Schmeidler [85, p. 62]) ■

Form Hanani, Netanyahu and Reichaw [40, Theorem X.4.2] it also follows that Q- 1  is 

bounded, i.e., | |0 -1 || =  supi^n^ ||fl- 1x|| < oo. Thus supjj \uiyj\ < oo where [fl-1]tj =

Next, we need to establish properties of the matrix fl" 1 as m  tends to infinity. In 

particular we want to establish that the inverse Q" 1 approximates Q- 1  as m —► oo. We 

define ui1̂ l =  [Q^1]^/ and analyze the properties of u i^  in the next Lemma.

Lem m a 4.3. Let flm be as deGned in (4.1). DeGne Q" 1 such that = Im and

QmQ” 1 =  Im Vm. Let u;™ =  [Q"1]̂  ̂ and [fi~l]tj =  Then —» uiij for all i . j  as

m —* oo and Vz ^  j  Wij —► 0 as j  —► oo, Vj ^  i uiij - » 0 a s i —* oo, —► a ~ 4  as z —> oo.

Proof. By Assumption (Al) we know that 22 22 l°’(^r>0l < B  ^ us 22k la  (̂ ’2)1 < B  for 

any I. Therefore for any fixed /, a (k, I) —* 0. This holds also if the roles of k and I are 

reversed. Also 5Zfcl°’(k>k)| < B  such that a (k ,k )  —> 0. Define the infinite dimensional

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

matrices 5 ^ , SJJ and 5 ^  according to the following partition

n =
f 2 m

Qm.
1 2

cm  
& 2 1

C m
° 2 2

Then ir (S E S # )  = E £ m + i 5 X i  k  (*. Z)|2 -  0, fr (S £ S £ ') -  0 and fr(S£-<r4/)(<?£-

a AI) '  —► 0 as m —+ oo. Then define the infinite dimensional approximation matrix

n*m  =
Clm 0  

0 o-4/

Clearly 1 exists Vm by Lemma (4.1) and the partitioned inverse formula. We now have

( s r 1 -  t o  =  s c » ( n  -  f o s r 1

such that

l|n~‘ - £ C ‘|| s  I l l ' l l  lin-scil ||n-II

We have shown in Lemma (4.1) that the smallest eigenvalue A™ of Qm is nonzero. Then 

by a familiar inequality for all x € Rm x Q ^ x / x x  <  1/A™ < oo Vm. Then | | 1 |J =  

supI x,fl“ 1x /x ,x +  cr-4 <  oo, ||fl_1[| < oo and

OO 771 OO 0 0

l i n - n ^ H  =  sup 2 5 3  ]T|<x(fc,z)l\xk\ N  +  £  k ( M ) l | z j t l N
H1!! —1 /=m-f 1 k=l fc=T71+l *=771+1

OC 771 OO 0 0

s  2 £  £  \cr(k,l)\ +  £  £  \c t (k,  Z)| —► 0 as m  —► oo.
i=mH-l fc=l fc=m +l/=m +l
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Thus ||D- 1  — —*• 0 as m — oo ■

Using this notation we can state our next theorem, which establishes a lower bound

for the covariance matrix.

T heo rem  4.4. Let the asymptotic covariance matrix o f 0  be A~lB A ~ l , where A  is defined 

in (3.2) and B  in (3.1). Then, limm_oo exists and

A~lB A ~ l -  ±  lim { P ' A lPm) 1 > 0,(P m—»oo v '

where > 0  stands for positive semi-definite.

P roof. See Appendix B ■

Define as the limits of the elements in the matrix Q '1. The optimal covariance 

matrix E =  limm_oo(fi’m^m1-Pm) _ 1  can be evaluated to be

h ((PA) e tkXd \ ^  {^ J  r] (4>, X) e,lxd \ j

- l
(4.2)

In the next section we will show that the formal analogy between (4.2) and the lower 

bound for the standard GLS estimator can be exploited to construct an efficient instrumen­

tal variables estimator. The standard GLS estimator corrects for heteroskedasticity in the 

observations y:. Here, however, yt is strictly stationary and therefore has a homogeneous 

marginal distribution. Heterogeneity is introduced through a nonconstant autocovariance 

function of . The GLS type transformation needed in this case is thus to reweight each 

innovation by the correlation with . Heuristically speaking, a GLS transformation is per­

formed on the innovation sequence rather than on the observations. This approach will be
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formalized next.

5. O ptim al Instrum ental Variables Estim ators

The main result of this part is to relate the lower bound previously obtained to a class of 

instrumental variables estimators. The lower bound covariance matrix for the class of IV 

estimators will be shown to be equal to E in (4.2).

The instruments zt are restricted to be linear functions of the innovation process at. 

Restricting the instruments to the linear class has implications for the efficiency properties 

of the estimators. It rules out conditional GLS transformations and ML estimators for 

parametric cases. Linearity, on the other hand, leads to a tractable theory. We define zt 

as
00

Zt =  ^  0.k£t-k 
fc=l

with a,j 6  and 53 | j | 1//2 ||aj|| <  oo. In particular we use the same number of instruments 

as parameters to estimate. The estimation problem for the time series model can be stated 

in terms of the orthogonality condition

E[(C((30 ,L )yt) z t} = 0  (5.1)

with Zt an J rt_i-measurable instrument.

Rather than offering a complete analysis of the consistency and asymptotic normality 

of estimators based on this orthogonality condition, we will make high level assumptions 

to that effect. The special case of an AR(p) model will be treated in detail in the second
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part.

We follow Hansen [45] in working with a general criterion function Qn(Pn) such that 

the estimator f3n is defined as the solution to

II<2 »(A>)II2 / 2  =  o.

Qn(Pn) will be assumed to behave asymptotically in a way to satisfy (5.1). Since 

typically Qn(Po) is a function of (C((30, L)yt)zt = £tzt it is natural to require a martingale 

CLT to hold for y/nQn((30).

Consistency arguments are complicated by the fact that the parameter space for linear 

time series models usually is only locally compact. The consequences are far reaching. 

Jennrich’s [57] lemma 2 and 3 are not applicable implying that one can not even ensure 

that 0 n is a measurable function. Hosoya and Taniguchi [54], Kabaila [58], Taniguchi [92] 

are assuming compactness of the parameter space to avoid consistency problems. Such an 

assumption is not valid in the ARMA case.

Here we will proceed by adopting the Type B consistency proof in Huber [55]. The 

formulation there is in terms of low level assumptions on the criterion function and the 

data generating process which are not readily adaptable to the present situation. In a 

later development in the theory of nonlinear estimation, Wu [96] states the consistency 

proof in terms of high level assumptions on the criterion function. A similar approach is 

taken in Pakes and Pollard [77]. However, both treatments rely on compactness of the 

parameter space. Zaman [97] extends Wu’s approach in several directions. In particular 

in his consistency proof [97, theorem 2] it is only assumed that the parameter space is
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Hausdorff.

Here we will use Zaman’s approach to force the estimator (3n into a compact subset 

of the parameter space with probability one. This result based on high level assumptions 

will correspond to Huber [55, lemma 2]. We start by making the following assumptions 

about Qn(P)-

A ssum ption  D l .  Let the sequence o f estimators (3n € be defined such that

HQnCdJII2 / 2  —► 0  almost surely

where Qn (.) is separable (see Huber [55, p.222[) and ||.|| is the Euclidean norm.

A ssum ption  D 2. 0O € © C Rd where 0  is locally compact Hausdorff (LCH).

A ssum ption  D 3. The function Qn(0) is locally stochastically equicontinuous, i.e for 

every 0* € 0  and for e > 0 35 > 0 and every open set U C 0  such that 0* € U it 

follows that

lim supP < sup  sup Qn(P') — Qn{0)
n  ( f e u  0 ' e B (j3-'6)

> e > < e.

A ssum ption  D 4. Let Q(/3) =  E  [(C((3,L)yt)zt\ . Assume EQ n({3) = Q{0) < oo exists for 

all 0  E 0 . For every 0  e  0  ||Qn(P) ~ Q(P)II 0.

A ssum ption  D 5. Let the sets Bk{@o) for k =  1,2,... form a local base around 0O. Then

inf ||Q(/3)|| > 0  for k = 1 , 2 ,... 
/3eB jfc(Aj)c ne

where Bk(0o)c  axe the complements o f Bjt(/30)- Moreover limn ||F<Qn(/30)|| =  0.
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A ssum ption  D 6 . There exists a continuous function b{0) >  6 0  > 0 such that the follow­

ing hold almost surely

i) liminf„inf0 6flfcWo)cne \\EQn{(3)\\ /&(/?) >  1.

ii) limsupn sup^€Bfc(/jo)cne IIQAW -EQAm  < L

R em ark  6 . A short discussion o f the assumptions is in place to relate them to the ex­

isting literature. Assumption (D1) is the deSnition o f the estimator and separability of 

the criterion function ensures that the supremum of the criterion function is measurable. 

Assumption (D2) insures that there are compact neighbourhoods around /30 entirely con­

tained in 0 . (D3) is a local stochastic equicontinuity condition. (D4) is a pointwise con­

vergence condition. (D5) is a familiar identification condition which makes sure that the 

expectation o f the criterion function is bounded away from zero outside a neighbourhood 

of the true parameter. The condition corresponds to the one in Zaman [97. theorem 2] and 

Pakes and Pollard [77, theorem 3.1, ii)J but is weaker than the one in Pakes and Pollard 

[77, corollary 3.2, ii)[. Also, the conditions of Wu [96, assumption A] can not be applied 

directly since we can not assume uniform convergence of the criterion function on 0 . (D6 ) 

corresponds to condition B4 in Huber’s original article. It is also equivalent to Zaman’s 

conditions (see [97, (6 ) and (7), p.276[). The conditions ensure that the criterion function, 

even though not converging uniformly, stays away from zero outside o f a neighbourhood 

around 0O with probability one. This then implies that an estimator satisfying (D1) has 

to converge eventually.

L em m a 5.1. Let 0n be defined as in Assumption (Dl). Then under Assumptions (D2- 

D6 ) there exists a compact subset C  C 0  such that /30 € C and P(0n € C) = 1 for all
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n > no some no <  oo.

Proof. By local compactness there exists an open set O C 0  with (30 € O such that the

closure O is compact. Since Bk{l30) forms a local base 3 k  such that Bjt(/30) C O. Then

O C Bk(Po)c. Now let O = C. The remainder of the proof follows immediately from 

Hubers argument. By assumption (D6 ii) 3 e > 0 and some no <  oo

sup \\Qn{P) -  EQn((3)\\ /b (0 )  < 1 -  2e (5.2)
/3£C

for ail n > no. Also by (D6 i)

inf \\EQnm \ / b ( / 3 ) > l - e  (5.3)

Combining (5.2) and (5.3) then implies for all (3 £ C  and n sufficiently large

\\Qn(P) — E Q n({3)\\ <  ( 1  —  e )  \\EQn((3)\\

or \\Qn{P)\\ > e \\EQn{[3)\\ > ebo- The result now follows form the definition of 3n. ■ 

Consistency of 0 n can be established by applying standard arguments for compact 

parameter spaces to the behaviour of Qn(P) on the set C.

Proposition 5.2. Let /3n be delined as in assumption (Dl). Then, under assumptions 

(D2-D6), (3n £  /So-

Proof. Restrict attention to the compact set C. Then for any open neighbourhood U of
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(3q inf0 <zc\u \\Q(0)\\ > £ by Assumption (D5) such that

P(0n  e  C \U ) <  P  sup \\Q{(3) -  Qn(Pn)  II  +  \\Qn(Pn)\\ >  £

V/J6 C J

For n  sufficiently large this probability can be bounded by

P  sup \\Q{0) -  Qn{P) || > e +  e 
U e c

where we use ||Qn(/2n)|| =  op(l). Then for every 0  € C  choose a neighbourhood Uq such 

that for n  large enough

P  ( sup Qn(0 ) -  Qn(0) > e <  e

by Assumption (D3). Select a finite subcover Ups s =  1 , S  of C. Now it follows that

P  sup \\Q{(3) - Q n{0)\\ > e 
\p e c  j

= P  max sup ||Q(/3) -  Qn(0) || > e 
\* < s  0euP3 J

< P  \ max sup ||Qn(Ps) -  Qn(0)\\ > £
\  Ŝ s  &e.up, J

+P  ^max ||QniPs) ~  Q(Ps)II > e

< P  [ sup sup
^ ' e c ^ up'

< e

Q n (0 )~ Q n (0 ) > e \ +e

where P  (maxs<s ||Qn(0s) ~  Q(Ps)II > e) Soes to zero by Assumption (D4). This com­

pletes the proof ■
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We now state assumptions tha t are enough to establish a result for the limiting distrib­

ution of \fn{(3n ~(3q). We require that the criterion function has an asymptotic distribution 

which is the same as the sample analogue of the moment restrictions.

A ssum ption  E l .  <JnQn{0n) =  ov (1 ) .

A ssum ption  E2. y/n(Qn(0o) -  £

For any m e  N define =  [a i,...,Om] with £  ||afc|| \k \ 1^ 2 <  oo and z™ =  aket_k. 

Then, by the martingale CLT (A .l), it follows that

We make the following assumption.

A ssum ption  E3. Qn{.) is twice continuously differentiable on a neighbourhood N(j30) of

n
y / n ^ e t z ?  Y m ,

where Ym~N(0, for any fixed m. Now Lemma (A.4) imphes that \fn  5Z™= 1  s tzt - i

iV(0, limm Next we want to expand the first order condition for (3n around 30.

0o- E[{jLC{(3Q,L )y t)zt\ =  M  > 0. Also,

^ an  (3£N(/30)
sup 4nQn(P) -  E [ (^ C (0 ,L )y t)zt} 0
l N ( B n ) O P  O P

d

and sup0sN(/3o) ~ ^ rQ n (0 )  =  Op( 1).

Since yt = C  1 (j3q, L)et, the expectation can also be expressed as

M  = E[(-^\ogC ((3 0 ,L)et)zt}.
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Using the definition of bk =  (27r)~1 f *  tj((3q, \)e lXkd \  and stacking the Fourier coefficients 

6 fc in the matrix Pm we can also write M  =  limm P'mAm. A familiar mean value expansion 

leads to

° p ( l )  =  'Q j j Q n ( 0 n ) \ / ™ ' Q n ( @ r i )

=  ( M  +  o p ( l ) ) [ Q n ( / 3 0 )  +  ^ Q M ) ^ ( P n -  f30 ) ] .

The limiting distribution of the instrumental variables estimator is stated in the next 

theorem.

T heorem  5.3. Let zt — limrn_ o a with =  [ a i , . . . ,^ ]  and JZIIa ifcll l̂ | 1 /2  < 0 0 •
»)

Then the estimator based on E  [C(0, L)ytZt] =  0 and defined by (3n =  argm in||Qn(,dri) ||' 

has a limiting distribution given by

\/n (fln — (3q) -  N (0 ,M ~ l ( Iim A ^ n mAm ) M - 1)m—»oo

The covariance matrix A/- 1 (limm_oo ^Kn^mAm)M ~l satisfies the matrix inequality

(P mAm) _ 1  X ^ m A m  (A iP m ) ^  > S (5.4)

where E is given in (4.2).

Proof. Use the same arguments as in the proof of Theorem 4.4 ■

Theorem (5.3) immediately leads to the construction of an efficient IV estimator. The 

matrix Am has to be chosen in a way that (5.4) holds with equality. This is seen to be the
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case for Am =  Another way to characterize the lower bound in the GLS sense is

to require that

Var[(C(l30 ,L )y t)z t} = M , 

where Var [C((30 ,L)ytZt] =  E  |ef ztz't . The instrument zt satisfying this condition is given

by

zt =  lim P ' A leT  (5.5)m—*00

where e™ =  [e£_ i , . . .  ,e t_m] . The expression for zt shows that the optimal instrument 

balances two effects. It gives more weight to innovations which carry a strong signal 

measured by a high value in Pm. In fact, bk measures the effect of et-k  on yt. On the 

other hand, the contribution of £t~k is discounted if it is strongly linked to the error £t as 

measured by a high correlation between e£ and £t~k£t~i- The situation here differs from 

the case of independent errors e£. In that case, the innovation £t-k  only affects yt . With 

dependence in second moments the error not only generates the signal measured by yt but 

also changes the error variance E  (ef |.F£_i )of the measurement equation. It is this second 

effect which results in the efficiency loss for the Gaussian QMLE.

We can now verify that an estimator based on zt indeed attains the lower bound. The 

variance is

2 'et ztzt =  E le? l im
L 771—►OC

=  lim P ^ n J P m
m —*00
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This establishes that the variance of the score process is equal to the expectation of the 

first derivative of the score process.

The analysis in this section is general regarding the functional form of the time series 

model. In particular, nonlinearities in the parameters are not excluded. In the next part, 

attention will be focused on the autoregressive case since this allows for explicit expressions 

of the estimators in terms of projection matrices.
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Part II

Autoregressive Models

In this part the general setup from the previous analysis is specialized to the autoregressive 

case. For this case the instrumental variables estimator can be represented as a projection 

operator. The focus of this part is on developing a feasible semiparametric version of the 

IV estimator.

This is achieved by approximating the instruments in the frequency domain. The ben­

efits of the frequency domain implementation are in a reduction of the algorithmic com­

plexity from 0(n?) to 0 (n  log n). The resulting estimator is independent of a bandwidth 

choice which makes it attractive for applied work.

For expositional purposes, the dependence structure of the errors is somewhat simpli­

fied. The consequences of this simplifying assumption are discussed in the next section.

6. M odel

We start by defining the stochastic environment of the model studied. Let (fi , F  , P) be a 

general probability space and define a filtration Ft to be an increasing sequence of er-fields 

such that Ft Q Ft+\ C F  V t. If not stated otherwise, random variables indexed by t will 

be assumed to be adapted to the filtration Ft. We assume that we have a sample of size n 

of a univariate time series yt where t =  {1 , ...,n}. More specifically, we assume that yt is
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generated by the following autoregressive model

<t>(L)yt =  £t (6.1)

where et is a martingale difference sequence. Here <p(L) =  1 — dxL  — ... — 0pLP. o' = 

(01, .... 0p) is the vector of parameters describing the mean equation of the model. It is 

assumed that <p(L) has all roots outside the unit circle. We are interested in estimating 

the parameter vector (f>. The martingale difference assumption for et implies absence of 

correlation between the errors. However, it is not assumed that the errors are independent. 

Rather we allow for dependence in higher than second moments to account for thick tails 

and conditional heteroskedasticity in the errors.

A ssum ption  F I .  (i) £t is strictly stationary and ergodic, E  (st \ F t - 1 ) =  0, E  (sf | Ft- \)  = 

a2t , E  (e?) =  o 2 < oo.

(ii) o(L) has all roots outside the unit circle.

(iii) E ((e 2t -  ct2 )(4 _ s -  a2)) = a  (s) < oo for s > 0.

(iv) E  [e2 £ t - s£ t - r )  =  0 for s ±  r, s, r > 0.

(v) ^2 |s| \o (s)| =  B  < oo, E  (e^St-s) some a>  0 for all s.

R em ark  7. Assumption (iv) is somewhat restrictive as it rules out some nonsymmetric 

parametric examples such as EGARCH. While (iv) is not a critical element in the theory 

developed later, it is maintained to simplify the exposition. The IV  estimators proposed 

in Section 7 are still consistent and asymptotically normal if (iv) fails. However, in this 

case they lose their optimality properties. Under these conditions the covariance matrix
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estimators (10.9) (or the standard errors o f the IV  estimators are no longer consistent.

By definition of the conditional expectation operator, crt is T t- \  measurable. As­

sumption (FI) implies that el is strictly stationary and ergodic and therefore covariance 

stationary. It should be emphasized that no assumptions about third moments are made. 

In particular this allows for skewness in the error process.

In this paper it is explicitly assumed that the parametric form generating the higher mo­

ment dependence is unknown. Nevertheless, we provide examples of widely used processes 

that exhibit features analyzed here, mainly to illustrate the relevance of the assumptions. 

A number of popular processes used mainly in financial econometrics satisfy Assumption 

(FI). Examples are provided next.

Exam ple 6.1 (A R C H (l) , Engle; 1982). Let et =  uth lJ 2, where u t is iid(Q, 1 ) with 

symmetric distribution and ht =  7 q + Expanding leads to

ht = 7o +  £  7l ui~J

In case of normal ut , the conditional distribution of et is also normal.

Exam ple 6.2 (G A R C H  (1,1), Bollerslev; 1986). Letet =  uthlJ 2, whereut isiid(0,1) 

with symmetric distribution and ht =  7 o +  7 ief_i +  0 lht~i. Substitution for el gives 

ht = Qo +  (aiUj_ 1 4- di) h t - 1 - Expansion again leads to

ht = 7o ( 1 +  E [ (7 iu*~j + 13 j
t=i j=l
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Exam ple 6.3 (S tochastic  V olatility). Let et =  utexp(/it/2) with ht = Sht-1 4- vt . 

ut ~  iid  (0,cru). vt ~  iid(0,av), ut and vt independent o f each other. Then. St = 

ut exp(J2 i=o &vt- i ) =  ut 6 xp(ut) exp(Ei=i

E xam ple 6.4 (L inear Scale). Let et = utht with ht = ^ t = 0  c(i, 9)vt~l , ut ~  iid(0 ,a u), 

vt ~  iid(0 , crv), ut and vt independent o f each other.

Remark 8. Nelson [69] obtains sufficient conditions for stationarity and ergodicity of 

6.1 and 6.2. The martingale difference property follows immediately from independence 

of ut. Assumption (Fliv) is shown to hold for the ARCH{p) case in Milhoj [6 8 ]. The 

reason is that odd moments appearing in the asymmetric fourth moment terms are zero 

by the symmetry assumption for the error density. The same argument extends to the 

GARCH(p, q) case. For the Linear Scale and Stochastic Volatility examples. Assumption 

(Fliv) is satisfied because o f independence between ut and vt. I f ut ^  N ( 0,1), then fourth 

moments are known to exist i f  4- 2 j 10 1 + 0{ < 1. This condition is valid for ,3 = 0 

and thus covers the AHCH case. In Milhoj [6 8 ] and Bollerslev [9]. the autocorrelation 

structure cr (s) is shown to be identical to the AR(jp) and ARM A(m ax(p,q),q) case for 

ARCH(p) and GARCH(p,q) respectively. This implies that the summability condition 

holds if  fourth moments exist. For (6.3) stationarity and ergodicity follow ifh t is stationary, 

i.e. |<5| <  1. Assuming ut ~  N (0 ,1) and vt ~  N (0 ,1), it is shown by Breidt, Crato 

and deLima [12] that cr(s) /cr (0) =  exp (6 s/ I  — <52) — 1 or. using the expansion for the 

exponential, that o (s) /cr(0) =  7ET ( ^ A  — 52)k . Then we can bound ^ |s |c r ( s )  <

exp ( l / l  — <52) cr (0) s8 s. A form similar to Example 6.4 was proposed in Hansen [43].
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Based on the results in Part I, we will now introduce the optimal instrumental vari­

ables estimator for the AR(p) model. The estimator is constructed by reweighting the

Without parametric assumptions about the form of conditional heterogeneity these mo­

ments typically have to be estimated.

7. Instrum ented Variables Estim ator

The instrumental variables estimator defined by E  [(0 (L ) yt) zt] =  0 can be written explic­

itly in the case of an autoregressive model as

Note that Y  = Y - i0  4 -e . The instrument zt is assumed to be J^-i-measurable. strictly 

stationary and ergodic so that 0 is consistent. Under additional moment conditions, the 

asymptotic distribution is

innovation sequence by the unconditional fourth moments c  (k ) -+- cr4  of the error process.

(7.1)

where

Y  — [z/i+p> ■ ■ ■ 12/n]

Vp i • • • i U n— I

\/n  ^0 — 0^ => N  ^0, lim ^En lZ  Y_i j  E n ^ Z e e Z ^ E n  lZ  Y li j
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Using (j) 1 (z) = Z % 0  ^ 4>,jz '’' fĉ e t m̂e series y£ can be expressed as a linear filter of 

past shocks yt = Yl'jLo Also, let

a k = E  (e* e£_fc) =  a  (k ) +  <r4 (7.2)

and b'k =  ( t^ j t - i ,  ---^ fc -p ) with =  0 for k < 0. Then define P'm =  [&i,

We have shown in Part I that for zt =  YlbLi ak£t-k the asymptotic covariance matrix 

of this estimator has the form limm_ 0o(P>m^m)- 1 -'‘C lfim.Am(A^nPm ) - 1  with lower bound 

lim(cr4 P ^ n “ 1 Pm)~1. Under Assumption (FI), Qm =  Diag(ati,

An optimal set of instruments Z  constructed from zt = limm_oo P ^ Q " 1̂  as in (5.5) 

can be written explicitly for the AR(p) case as

ihE OO o j
j =o

z t + l , p  — 2- , j =0 a j + p £ t ~J

The instrument matrix Z  is chosen in the following way

Z =

z p, 1 i 5 ^n—1,1

z l ,p Zn-p,p

where it should be emphasized that the k -th  instrument, i.e. the instrument for parameter 

<fik is lagged by k periods and has a convolution filter which is also shifted by k elements. 

It is clear that the instrument matrix Z  is not observable and the procedure is therefore
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infeasible. The main result of the paper will consist in the construction of an adaptive 

estimator for 0. For the moment, however, the analysis is carried out under the assumption, 

that Z  is observable. The asymptotic distribution of 0  is analyzed by considering a typical 

element of E n ~ lZ >Y -i  which can be evaluated by direct calculation as

lim | E n 1Z  Y~ 1
k,l

=  lim
t=l+p j= 0 i= 0

°° xb xb 

ho ai+kvl
Also, a typical element of E n lZ ‘ee Z  is

lim71

Tl

En XZ  ee Z = lim
k,l n

n _ 1  E£$ztz t
t = i + p k,l

xb 0
= -*’* e t-k -iC t-i-i

« a i+k<*i+L

OO

- E
j= 0  1=0 a i +k a j+l

xb xbt̂p,i+k—I ̂ <?,i i7 _2 _ 2
„  2 t c £—f c - t

t= 0  i+k

^ £*i-f A: , i.. ,ii= 0 i= 0 (Xi+kVl

where the last equality follows from the fact that 0 _ fc =  0 for k >  0. The asymptotic 

distribution of 0  then is

\fn  ^ 0  — 0 ^ => N  I 0,<r- 4
_°° 0  0  \  • o.t 1\
I ^  0/1 , / I
t= 0 (Xi+kVl

- l \

k,l

and it is easy to check that ^ equals r. in (4.2) for the autore-
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gressive case.

As discussed before the instrument Z  is not observable and needs to be replaced by a 

suitable estimate. While direct calculation of Z  is possible, it is computationally inefficient, 

requiring 0 (n 2) operations. A more natural way to formulate the estimator is in terms 

of discrete Fourier Transforms. Since the construction of the optimal instrument involves 

a convolution in the time domain, this is transformed into a simple multiplication in the 

frequency domain, thereby leading to a reduction in computing time.

Moreover, it turns out that direct calculation of the instruments can be avoided al­

together in the frequency domain. It will be established in the next section that the 

instrumental variable estimator is asymptotically equivalent to an estimator based on the 

Whittle likelihood (8.2) where g^J- (tp, A) is replaced by an optimal filter.

8. IV  E stim ation in th e  Frequency D om ain

In this section a frequency domain approximation to the optimal IV estimator is derived. 

To introduce notation and methodology, the Gaussian estimator for the AR(p) model in 

the frequency domain is reviewed. It is then shown how the estimator can be transformed 

into an instrumental variables estimator by applying a linear filter to the data periodogram.

8.1. Spectral Representation of the .AR(p) Model

We assume that starting values y~p+i, .--,yo are drawn from the stationary distribution of 

yt . Then, the Gaussian QMLE in the time domain can be approximated asymptotically by
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We derive a frequency domain analogue to 4> based on the periodogram of yt alone. 

Consider the inverse of the spectral density for the AR(p) model f^J- (A) = ^\4>  (e'A) |“ 

and let \<t> (e,A) | 2 =  A). The definition of the spectrum of the squared errors will be

useful later and is
OO

A2e2 (A) =  (27r)-1 £  <r(k)e~iXk. (8 .1 )
fc=—oo

Define the lag operator a(A) = [elA, ....,e,Ap] and denote the complex conjugate transpose

by a(A)*. Also introduce the matrix A  (A) =  a(A)*a (A). Then gTOl(<?>, A) can be represented

as

9yy (0i I? 0
1 a(A) 1

1

* £ 1
<t>

We introduce the discrete Fourier transform of the data as ujy (A) =  yte_,tA and

the periodogram as / n,ra (A) =  (A)|2 . The Whittle likelihood, which is the spectral

representation of the sum of squared errors, can now be written as

f  In,yy (A) X)dX = J * JBi!W (A) [l + 0a(A)* +  a( X)o +  0  A(X)4>] dX. (8.2)

For computational purposes (8.2) can be approximated by a discrete sum over the funda­

mental frequencies by Brillinger [14, theorem 5.10.2]. The QML estimator is defined as 

the value minimizing (8.2). The solution to the minimization problem is given by

4> = In,yy (A) Re[A(A)] dX ĵ J *  Re [a(A)*] In,yy (A) dA, (8.3)

where the real part Re [.] is the orthogonal projection of the complex plane onto the real
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line. From Lemma (A.2) it follows that

r  a(A)V„tW (A) dA =  T  Infyy (A) A  (A) 0 dA+ [*  /„,££ (A)  ^dA+op ( V l/2)
7-7r 7- tt u — 0a(A)*J

A similar expression can be obtained for a(X)' Inyy (A). Next, noting that

d \ngyy((t>, A) /<90 =  Re a  (A)* ^1 — 0  a(A)*j
- l

(8.4)

and introducing the notation t) (0 , A) =  d  In gyy (0, A) /<90 leads to

r  Re [a (A)* In,w (A)] dA =  T  / B,w (A) Re [A(A)j dA0  
J —7T 7 —7T

+  r  / n,£e (A) H (0, A) dA +  op ( n - 1/2) . (8.5)
«/ — IT

Substituting (8.5) back into (8.3) results in the following expression for the deviation of 0  

from the true parameter vector 0

( 0  -  0 ) =  ( f  In,yy (A) Re [A(A)] dX^j J Z  j * In,£e (A) fj (0 , A) dA +  op(l) . (8 .6 )

Consistency of the estimator follows by the ergodic theorem from the fact that

e [  I n,£S (A) 17 (0, A) dX = a 2 j  77 (0, A) dA
J  —TV J —TV

and 77 (0, A) dA =  0. By the ergodic theorem, we also have f* K In, yy (A) Re [A(A)J dA
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9yy (<£> A) R-e [j4(A)] dX. It can be established that

2  /  9yy (<t>, A) Re [A(X)] dX =  f  f] (0, A) fj (<(), A)' dX.
J  — 7T 7 —X

It follows from the results in Part I that -Jn =t" N  (0, A ~ l B  A ~ l ) , where

A = ^ f _  v(4>,X)v(4>^)'dX (8.7)

and

/ 7T y*7T

I  /e2e2 (/*) i  (<f>i f* — V {<t>i A) dfidX. (8 .8 )
-7T 7 —7T

The appearance of fourth order cumulant terms in the matrix B  is caused by the 

dependence between errors and regressors. In the case of a constant conditional second 

moment E  (ef \F t- i) =  cr2 the spectral density f e2e2 (fj.) is equal to ct4/(27t)2. The second 

term in B  is then zero and the covariance matrix reduces to 2er2A_1, as in Hannan [42].

8.2. Frequency Domain Approximation

It will now be shown how the instrumental variables estimator introduced at the beginning 

can be implemented in the frequency domain. For the purpose of this and the next section, 

we introduce the spaces L k [—7r, 7r] of functions /  : [—7T, 7r] —► <CP such that J \ f \ k dX < 

oo. Also, define the spaces Ck [—n, 7r] of functions /  : [—7T, tt\ —*■ Rp such that /  is k 

times continuously differentiable. Throughout, the function Rn (A) will denote a generic 

remainder term whose definition can change. We start by approximating the discrete
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Fourier transform of the instrument variables ztj

—i \ t

= n '- '“e— > —— e
U ah+j t= 1

A . c- i
afc+J

=  ^ , fc(A)eiÂ ( e- lA)a ;y (A) +  JRri(A)

=  i** (A) eiAV  (A) +  n " 1/ 2 T  (A)
f t  Qfĉ

(8-9)

where l ^ k (A) =  £ “ 0  j^ f-e  iA(j+fc) and

00 00 ih-
Rn (A) =  1+ (A) n - 1/ 2 V  iP je-^U n j (A) +  n " 1/ 2 V  - ^ - e ~ ^ U n^ (A)

j = 0  j = 0  Qfĉ

with Unj  (A) — 5Z”=1J_j£te lA£ +  YJt=i£te lXt- In 411 analogous way we define

u Zk (-A) =  l ^ k (—A) e~iXk4> (eiA) cjy (-A) +  Rn ( -A ) . (8 . 10)

Also, from Lemma (A.2). ^/n f  In,yzh (A) -  l^k  (—A) e ,AA:<p (elA) /„,yy (A) dA =  op (1). De­

fine (A) as

h , i (A)

Z*(A) =

^,p (A)

(8 . 11)

The properties of I^ (A) determine the asymptotic distribution of the instrumental vari­

ables estimator. The next lemma gives a representation of (A) in terms of convolution 

operators. This shows that the smoothness of (A) is inherited from the smoothness of
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the AR{p) spectrum.

Lem m a 8.1. Let /,/,,* (A) =  with a* =  E  (etsf_k) , et satisfying As­

sumption (FI) and 4>j being the coefficients o f the power series expansion o f 4>(z)~l . Also 

assume that <f) (z) =  1 — (f> a (z )m has all characteristic roots outside the unit circle. Then 

lv (A) =  fa (A) +  lip (—A) can be represented as

fa(X) = j  +

where fa  (A) =  Y.'jL-oc OLje~iXj with &j =  ( ^  -  ^ r) •

P roof. See Appendix B ■

Remark 9. Using the convolution operator * a compact notation for fa (A) is fa (A) =  

(fa  * i?) (A) +  “if 77 (<P, A). The properties o f fa (A) can now be determined Grom those o f fa 

and 77. For fa  G L l [—7r ,7r] and 17 G C fc[—7t, 7t] it follows from Folland [31, theorem 8.10J 

that fa(A) G Cfc[—7r, 7r] implying that lil^ 2 < °°- While /<* € L l [—7r ,7t] is

sufficient to obtain this result it is not necessary. Alternatively if  ajt >  a  >  0 for some a 

and all k then sup jor̂ "1 1 <  a - 1  <  0 0  and \ j \ l / 2  < a - 1  £ ° I 0 l^il l i | 1 /2  < 0 0

i f  tj G C 2 [—7r, 7r]. These arguments show that fa (A) is sufficiently smooth to apply the 

central limit theorem in Appendix A.

The representation of the discrete Fourier transforms of the instruments in terms of the 

DFT for the data allows to obtain a frequency domain version of 4> without the need to go 

through an explicit calculation of the instruments in the time domain. The approximation
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relies on the fact that convolutions in the time domain sure transformed into multiplications 

in the frequency domain and the fact that the residuals can be computed by a simple 

multiplication of u y (A) by (f> (elA).

The discrete Fourier transform of the instrument matrix is then obtained from (8.9) 

by lagging each uiZk (A) by k periods leading to e~tXkujZk (A) and stacking the resulting 

transforms in the following way

u z (A) =

e ,Ao;2l (A)

e~iXpujZp (A)

= 0 (e""*A) u y (A) ^  (A) +  Rn (A), (8.12)

where Rn(X) =  a (A)* O Rn (A) and O is the element by element product. The correspond­

ing expression for the conjugate transpose of ujz (A) is

o'* (A)* =

elXu Zl (—A)

eiXpu Zp (—A)

where the symmetry of (A) is used. Using the notation In,yz (A) =  oJy (A) uiz (A)* and 

In,zy (A) =  uiy (A)* u)z (A) the frequency domain version of equation (7.1) can now be written

as

<t> = I  Re [IniZy (A) a (A)] dA] 1 f  Re [In,zy (A)] dA (8.14)

and using the fact that u y (A)wz (A)* = a (A)* <jxjjy (A)u;2 (A)* 4- uie (X)u>z (A)* 4- Rn (A) 

where y/n f  Rn (A) dA =  op (l). A similar expression holds for u y (X)* u z (A) reducing
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(8.14) to

0 -  0 = J * Re [/„,2y (A) a (A)] ctt] J *  Re [/„,2£ (A)] dX + op (rT 1/2) . (8.15)

The estimator 0 corresponds to the instrumental variables estimator introduced in Section 

7. It is possible to estimate directly the unobservable instruments. On the other hand, it 

is conceptually more convenient to separate the data and the unknown filters.

One additional approximation step produces an asymptotically equivalent estimator 

based on the periodogram of yt and an unknown filter. It is convenient to define

hx (0, A) =  Re (—A) 0 (e,A) a (-A )'

and

/i(0,A) =  R e L ( - A ) 0 ( e l'A)

By substituting for equations (8.12) and (8.13), (8.14) can be approximated by

0 = £ < « ( * ) * * ( * * > < « ] £  In,yy (A) h(0, A)dA. (8.16)

It is shown in the proof of Proposition (8.2) that 0 — 0 =  op (n 1/2) and

0 - 0  = J 17 In,yy (A) h*(0, A)dA] 1 f  /„,££ (A) lv (A) dA +  op ( n - 1/2)
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such that consistency again follows from ergodicity and the fact that 

E  p  /„,££ (A) lv (A) d X ^ o 2  r  lv (A) dX = 0.
J— 7T J —TV

It is transparent from equation (8.16) that 4> is infeasible as it stands, since it depends on 

knowledge of the true parameter values and the correlation structure of the squared errors. 

Feasible versions of and (f> will be discussed in Section 9 below.

Under the assumption that the weight matrix Re (—A) <f) (elA)] is known, the as­

ymptotic distribution of 4> is now a straight forward consequence of Lemmas (A.2) and 

(A.4). The asymptotic distribution of cj> and 'o can be analyzed by returning to equation 

(8.15). This is done in the next proposition.

P ro p o sitio n  8.2. Let <p (L) yt = et where all roots of <j> (L ) are outside the unit circle. I f  

et satisfies Assumption (FI) then for <j> defined in (8.14) and (j> defined in (8.16) we have

y/n (̂ > -  0) =  op (1)

and

v/n (<t> — <pj=>N (0, a  4E)

where — is defined in (4.2).

Proof. See Appendix B ■

The remainder of the paper will now be concerned with the construction of a semi- 

parametric estimator with the same distribution as <f>.
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9. A daptive E stim ation

To develop an operationally efficient IV procedure, it has to be established that h (<f>, A) = 

Re [/̂  (A) <(> (e-,A)] and hx (0, A) =  Re [l^ (A) <b (e~,A) a (A)] can be replaced by consistent 

estimates without affecting the limiting properties of the estimator. A semiparametric 

estimator having this property is called adaptive. No confusion should arise between this 

use of the terminology and the literature on feasible local minimax estimators such as 

Bickel [7], Kreiss [60], Linton [63] and Steigerwald [88]. The main difference, apart from 

efficiency issues, is the fact that here a nonparametric correction to the criterion function is 

made while the local minimax literature makes a nonparametric one step Newton Raphson 

improvement to a consistent first stage estimator.

Different approaches to prove adaptiveness are used in the semiparametric literature. 

Direct calculation is used in Robinson [81], [82] in the context of iid  models and partially 

linear models and by Hidalgo [52] in the context of time series regression models. Newey 

[74] applies similar techniques as [81] to the instrumental variables case for iid  data. An­

drews [2] develops a general methodology based on stochastic equicontinuity arguments 

and applies it to the partially Unear framework. Andrews’ approach will be used here 

to break the proof into two parts. First, it is established that uniformly in a shrinking 

neighborhood of the true filter h (<p0, A) the distribution of an estimator is arbitrarily close 

to the distribution of the estimator based on the true filter. The second step shows that a 

nonparametric estimate A) converges to h (<p0, A) uniformly with probability one.

This argument will now be formalized. Let l̂ , : [—n, 7r] -+ Cp and <t> : [—7r, tt] —+ C and
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introduce a set of functions H defined as

U =  jfr : [-7T,7r] -+ Kp h =  Re ^  (-A) 0 (elA) j ;R e[1$ (-A )], Re (e,A) j 6 C 1 [—7r,7tj |

(9.1)

We define the L°° Sobolev norm of order one as

ll/lii =  SUP 11/(A) 11+ SUP
A e [ —7r,7rj A e [ - 5 r , j r ] d \ /(A)

where ||.|| is the Euclidean matrix norm defined by ||A|| =  (trAA * ) 1^ 2 . Introduce the metric 

on H  as

p(hi,fi2) =  ||^ ,i  -  ^ ,2 II* +  ||0 i — 02Hi •

(H, p) is a complete metric space. If <f> is given by (6.1) and /,/, by (8.11) then it follows 

from Lemma (8.1) that lv (<p, A) 6  Ck [—tt, 7r]. Therefore h(<p, A) 6 7i.

We proceed by defining the estimator for h (<f>, A). We have established that we can 

obtain a consistent estimate $ for example from 6  =  { Y ^ Y - i j ^ Y - i Y  or from its frequency 

domain analog introduced before. Residuals as a function of some fixed parameter value 

4> are obtained as in Kreiss [60] from

£t (4) =  £t(4o)  +  ( ^ - 4>q) iv t- i , • • - , y t - P)

such that the estimated error £t (<j>) can be decomposed into the true error and the J-t-i
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f

measurable part (0 — <f>0) (y t-i , . . . ,  yt-p)- We form the following statistics.

d fc(0 )  =  <

t = p + f c + 1

1n ELp+fc+i £t (0 )e?_fc(0 ) ^  >  <*»

d„, else

where the sequence dn > 0 for all n  with dn = O (n-1/2+") for some 0 <  v  < 1/2. The 

truncation numbers dn are used to avoid ’’too large” values for a ^ l (d>). Truncation was 

introduced by Bickel [7] in the context of score estimation. More closely related to our 

context is Hidalgo’s [52] semiparametric frequency domain estimator.

Next, an estimate for bk =  (27r)-1 f] (0, A) elXkd \  is needed. The vector 6 fc contains 

the impulse response function of the AR(p) model evaluated at different points. Here 

we want to express bk directly as a function of the underlying AR-parameters. From the 

definition of 17 (0, A) in (8.4) and the expansion 0 - 1  (2 ) =  with xp^j = 0 for j  < 0.

bk can be written as

bk =

where the coefficients xp^j satisfy the recursion xp^ — (PiXplj)S_ l — • • • — ®pU’0s_p =  0  for 

all s > 0 and 0^ o =  1 (see Kreiss [60]). Let 0^ denote the vector of the first p coefficients
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of the polynomial expansion of 0 1 (z ) . This vector is the solution to

1 0  

- 0 1  1 

" 0 2  — 0 1  1

0*,o 1

0̂,1
=

0

I

1=>-
i 1

o
1

(9.2)

which is denoted by 0 ^ =  $ -1ei where ei is the first unit vector and $  is the matrix 

defined in (9.2). Then, let bp+i denote the vector of coefficients 0 ^ 2 to ip^p+i- Using a 

p x p 4-1 selector matrix Si picking the last p elements from a p  +  1 x 1 vector we have

^p+ i

0  1 0

01 . . 0p

S i 0 P = r 0S i0 - 1ei

where we define T# = (pl if p =  1. In a similar way we obtain bp+s = T |S i$  l ei. The 

vectors 6 i . . .  bk can now be expressed as functions of the underlying parameters by

bk = Sp, ^ ma-'c[0’fc- pl)S i $ - 1ei

where the convention =  Ip is assumed and the selector matrix SPijt is defined by

[Sp,fc]tJ =  {i =  j }  { j < k}
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with the indicator function {.} =  1 if the expression inside the bracket is true, bk is 

continuous in the underlying parameters for all finite k and can therefore be consistently 

estimated from a consistent estimate 0 .

A nonparametric estimate of h (0 , A) is now defined as

n—p—l

i * w =  E
j = 1

and

hr, (0, A) =  Re [/; (A) 0 (e~l'A)] . (9.3)

No additional kernel smoothing is needed. The reason is, that h (0, A) is already a con­

volution between a bounded sequence and a twice continuously differentiable function. In 

fact, the bk implicitly contain a bandwidth since for every 0  inside the stationary region 

they will decay to zero quickly.

Nevertheless, the implied bandwidth might not be optimal in finite samples such that 

one might want to introduce an additional lag window k(-fc) with bandwidth parameter M. 

k(-jfc) is the j- th  Fourier coefficient of a spectral Window K  (A) satisfying f  \K  (A)| dX < 

0 0 , f  K  (A) dX =  1 . Robinson [83] derives cross validation methods for spectral density 

estimates where a goodness of fit measure for the density is minimized with respect to 

the bandwidth parameter. As pointed out by Newey [74], however, such a procedure does 

not necessarily lead to improved finite sample properties of the semiparametric estimator 

which should be the final objective.

We will also need the following matrix h£(0, A), whose elements are continuous func-
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tions of hn(<f), A) and which is defined by

hxn f a  A) =  Re [lt  (A) j  ( e - 'A) a (A)] .

The success of a semiparametric estimator depends on the ability to uniformly estimate 

the weights oej1. Additional assumptions about the moments of the driving error process 

are needed to assure this. Since dj depends on fourth moments such conditions necessarily 

involve higher than fourth moments. Here we prove uniform convergence by a mean square 

argument which necessitates summability assumptions on eighth moments. The following 

assumption is sufficient to prove the main result.

A ssum ption  G l .  Let ce.„£ ( ti, . . . ,  £7 ) be the eighth order cumulant o f the error process

assumption enables us to state the following result.

P ro p o sitio n  9.1. Let hn(<j)n, A) be as defined in (9.3), let Assumptions (FI, Gl) hold and 

assume that <fin —* <pQ in probability or almost surely. Then

£t- Then

£i £7

Assumption (Gl) implies that higher order cumulant spectra of order eight exist. This

sup
X e[-rr,7rj

as n —► 0 0 . Also P i p  n ity ih  (0o> ^ ) ) > ^) 0 for any 6 > 0 as n —» 0 0  and
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Proof. See Appendix C ■

We proceed to define the semiparametric estimator 0n(/in) by replacing ho =  h (0 O, A) 

with a nonparametric estimate (9.3). We will establish that

V n  (j>n(hn) -  4>n (ho)) = oP (1) • (9.4)

By applying Lemma (A.2) it can be shown that for h 6  H

In,yy(\)h(<f>,\) =  /n,w ( A ) R e ^ ( A ) 0 ( e - u )a (A )‘

+In,ee (A) h ^  (0 , A) +  h (0 , A) Rn (A)

(9.5)

(9.6)

where the remainder term R„. (A) is such that y/n J  Rn(X)q  (A) d \ = op (l) for any contin­

uous function q (A) with absolutely summable Fourier coefficients. Let

(0 , A) =  Re [/* (—A) 0 (eiA) 0„ 1 (eiA) '

such that (0O, A) =  Re [1̂  (—A)] =  lv (A) and

K 0 (& A) =  Re k  (“ *) <P (e‘A) 1 (e‘A)

(9.4) then follows if

|£  In,yy (A) f a  (<L A) -  hx (0o, A)) dX — Op ( 1 ) (9.7)
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and

—  op (1)| | ^ y  In,Ee ( A )  ^ 0 n )  ^ 7  ( A ) ^  c / a |

A / n | | y ”r i2 « ( A ) ( A n ( ^ n ) A) - M 0 o , A ) ) d A | |  =  ^ ( 1 ) .

(9.8)

(9.9)

(9.7) can be established easily with the help of proposition (9.1) by the following argument

I / *  In*y (A) (hxn (j>n, a ) -  hx (00, A)) rfA|

< sup 1*5 ( ^ , a )  - h x (0 0 , A) f  In>yy( \ ) d \
A 6 [ - jr ,7 T l  1 V 7  V -7 T

< 2 sup ||/t  ̂(—A) 0 -^,o(-A )<Po (elA)
A € [ - i r ,7 r ]  11 '  '  y  '

sup ||a(A ) | | 7  (0)
Aet-M

where the first inequality uses the fact, that IntVy (A) is a positive scalar and the second 

inequality uses tr(ab ba) =  (a a)(b'b) where a and b are two conformable vectors. The 

last expression goes to zero by (9.1) and the fact that s u p ^ . ^ ]  ||a(A)|| is bounded. To 

prove (9.8) we work with the metric space (H, p) defined in (9.1). Also let ho =  h (<pQ, A ) , 

h = A), 0 A =  0 (eiA) , 0o = <Po (e'A) and

v n (h) = s/n J  / n,££ (A) (h^  (0 , A) -  lnfi) +  Rn (A) (h -  ho) dX

for h E H. Following Andrews [2], (9.8) follows if for any given e >  0 there exists a 8 > 0 

such that

lim su p P  ( vn (hr^j - v n {ho) > rfj
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< limsup P  ( |u „  - u n (/io)|| > tf.hm € H ,p (hn,h0) < 5)

+ limsup P  (Jin H  or p (hn, ho) > fi)

<  limsup P  I sup ||un (h ) — vn (fio)ll > & | < £ 
n-*°° \ h e 'H , p ( k n ,h o )< 6

since we have established in proposition (9.1) that

limsup P (hn £ H  or p (h n ,fio) > fi) = 0 .

Therefore if

limsup P I  sup ||ura (h) — vn (fio)ll > & I < £ (9.10)
" ■ ^ ° °  \ h & i , p ( h n , h o ) < 6  J

then the following theorem can be established.

T h eo rem  9.2. Let hn(^n,X) as defined in (9.3). Let assumption (FI) hold and let on 

be a previous estimator for which 4>n —* <p0 in probability or almost surely. Then, the 

semiparametric estimator 4>(hn) defined by

0  ( h n )  =  [ I "  In,yy (A) K ( $ n , A)<*a] £  fn,yy (^) ^n(0n?

has a limiting distribution characterized by

\fh  ( 4>(hn) ~<t>o) =► N  (0,cr 4 E)

Proof. See Appendix C I .
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This result establishes the feasibility of a semiparametric estimator that improves on 

the efficiency of the conventional Gaussian estimator in the presence of higher order de­

pendence. While time domain versions of this estimator could certainly be obtained, the 

frequency domain version developed here seems most natural in the present framework. 

The frequency domain representation allows to avoid estimating the instruments for each 

observation in the sample. Instead an optimal filter applied to the periodogram of the data 

leads to an asymptotically equivalent procedure. Moreover, the fact that the optimal filter 

itself is a convolution integral in the frequency domain solves the problem of truncating 

the approximation of the optimal instrument at a given lag in a natural and elegant way.
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Part III

Simulation Results

10. M onte Carlo Sim ulations

In this section a small Monte Carlo experiment is conducted. To keep the exposition as sim­

ple as possible we focus on an AR(1) model. We consider what the efficiency gains/losses 

of the FV estimator are relative to a correctly specified likelihood procedure and relative 

to a misspecified M L  estimator. We also consider estimation of covariance matrices for 

the IV  estimator.

10.1. Relative Efficiency

The following questions are of interest: Under what circumstances does the optimal IV 

estimator achieve efficiency gains, how big are they relative to the Gaussian QMLE and 

how much is lost by not specifying the true likelihood. These questions are analyzed for 

the case where the true generating mechanism is an A R C H (l)  process.

We generate samples of size n  =  256, n = 512 and n =  1024 from the following model

yt = <pyt- i+ £ t  (1 0 .1 )

et =  uth\/2 

ht =  7o +

u t 'N (0 ,1).
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Starting values are yo =  0 and £q =  0. Small sample properties of three different

estimators to be defined below are evaluated for different values of <j>, 7 t 6  [0,1). It is 

clear from Milhoj [6 8 ] that asymptotic normality established in previous chapters only

IV  procedure to departures from the assumptions. The parameter 7 0 is fixed at . 1  for all 

experiments.

The parameter <p is estimated by three different estimators. The least squares esti-

with et =  yt — and ht =  7 0 4- 7 i£{_1- We use the B H H H  algorithm described in

Engle [26] to maximize the likelihood. Figure 10.1 shows the potential efficiency gains 

of the IV  estimator relative to the Gaussian QMLE as a function of the autoregressive 

parameter <j). The efficiency gains are computed from the asymptotic covariance matrix 

when the generating mechanism is (10.1). More explicitly, the asymptotic covariance

obtains for values of 7 r € [0, y fl/3 ). Nevertheless, simulation results are reported for 

parametrizations outside this interval in order to analyze the robustness of the proposed

mator is denoted by 4>n =  ^ " = 2  VtUt-i/ Ya = 2  V t-1• The optimal instrumental variables

estimator is obtained from the consistent first stage estimator (fioLS 3 5

(A) h((pOLS,X )d\

where hx (0, A) and h(cp, A) are computed as explained in Section 9. If the data are gener­

ated by (1 0 .1 ), the likelihood estimator 4>^L *s obtained from maximizing

( 10 .2 )
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E f f ic ie n c y

0 . 40

Figure 10.1: Asymptotic efficiency of OLS relative to the IV  estimator as a function of the 
parameter <p. Generating mechanisms considered are from bottom to top: 7 t =  .5, 7 X = .4, 
7 t =  .3 and 7 1 =  .2.

matrix of (f>2LS can be expressed as

OLS (<f>i 7cb 7i) -  5 2  ^ 2*a » + 1
t= 0

a OLS (10.3)

where <r4 =  (70/ l  -  7 i ) 2 and «i+i =  27o7,1+1/ [ ( l  -  7 i)2(1 — 37?)] +  <r4- The asymptotic 

covariance matrix for the optimal IV estimator can be obtained from (4.2). It is given by

0 /v  (0>7o>7i) =
t = 0

-1
(10.4)

Figure 10.1 plots a 2iv  (0 , .1 , 7 X) /o-QLS((f),.l , 7 i) for (j> € [0,1) and different values of 7 X.

* O L S
These theoretical gains are contrasted to the empirical efficiency of the estimators on , 

and based on 3000 replications for sample sizes 256, 512 and 1024. The results 

are summarized in Table 10.1.

As expected, gains for the I V  estimator are achieved for models where the autoregres-
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Table 10.1: Relative efficiency of OLS for ARCH(l) innovations
Model: yt = <Mjt- 1  +  £t £t — uth] /2 ht = 0 .1 +

Alv<Pn
*)kiL
4>n <t>n <Pn XIV<Pn <Pn

4> 7i n == 256 n =  512 n  = 1024
0 . 0 0 . 0 0.9969 1.0294 0.9966 1.0126 0.9980 1.0107

(0.0257) (0.0266) (0.0257) (0.0261) (0.0258) (0.0261)
0 . 0 0.5 0.9918 0.5158 0.9947 0.4144 0.9984 0.3801

(0.0534) (0.0278) (0.0535) (0.0223) (0.0258) (0.0098)
0 . 0 0.9 0.9502 0.4432 0.9619 0.4458 0.9631 0.3978

(0.0272) (0.0127) (0.0276) (0.0128) (0.0276) (0.0114)
0.5 0 . 0 0.9937 1.0272 0.9985 1.0087 0.9971 1.0106

(0.0268) (0.0277) (0.0270) (0.0272) (0.0269) (0.0273)
0.5 0.5 0.9388 0.4761 0.9375 0.4515 0.9616 0.3658

(0.0469) (0.0238) (0.0469) (0.0226) (0.0248) (0.0094)
0.5 0.9 0.9361 0.4083 0.9171 0.4478 0.9106 0.4759

(0.0262) (0.0114) (0.0257) (0.0125) (0.0255) (0.0133)
0.7 0 . 0 1.0046 1.0190 1.0046 1.0096 1 . 0 0 1 2 1.0025

(0.0259) (0.0263) (0.0259) (0.0261) (0.0259) (0.0259)
0.7 0.5 0.9071 0.5084 0.8958 0.4416 0.8590 0.3715

(0.0436) (0.0244) (0.0431) (0 .0 2 1 2 ) (0 .0 2 2 2 ) (0.0096)
0.7 0.9 5.5958 0.3998 0.8274 0.4470 0.8274 0.4470

(0.1445) (0.0103) (0.0214) (0.0115) (0.0214) (0.0115)
0.9 0 . 0 1.0391 1.0097 1.0152 1 . 0 1 0 1 1.0085 1 .0 0 2 2

(0.0272) (0.0264) (0.0265) (0.0264) (0.0264) (0.0262)
0.9 0.5 0.9209 0.5420 0.8522 0.4570 0.8308 0.4663

(0.0430) (0.0253) (0.0398) (0.0213) (0.0215) (0 .0 1 2 0 )
0.9 0.9 0.7281 0.4352 0.5951 0.3486 0.4878 0.4247

(0.0207) (0.0124) (0.0169) (0.0099) (0.0126) (0 .0 1 1 0 )
Relative Efficiency is defined as S 2v /S qLS or S \[L/S qLS, respectively, 
where S 2 is the estimated variance of the estimator <f>. Numbers in parenthesis 
are asymptotic standard deviations of the variance ratio. Results are 
based on 3000 replications.
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sive parameter is above .5. This conforms with the theoretical analysis based on asymptotic

approximations. For the sample sizes considered here, the theoretical efficiency gains are

not achieved completely. The table shows that the relative efficiency of the I V  estimator

improves with the sample size. The most significant increase takes place from size 256

to 512. It is also interesting to note that the I V  procedure maintains its properties even

for values of 1/3. In fact the gains are strongest when both autocorrelation and

dependence in the conditional variance are strong. The reason is that in this case the

dependence between the regressors and the errors is largest.

Figure 10.2 shows the empirical densities of the three estimators (f>̂ LS', (p1̂ and (p™1

when no ARCH effects are present. The graph confirms the information summarized in

the tables: The three estimators are identical under iid  conditions. Figure 10.3 shows the

~  O LS  *  „

empirical distributions of <pn , (f>n and (f>n for a sample size of 1024 when <f> =  .9 and 

7i =  -9.

Here clearly dominates the two other estimators in terms of efficiency and mean 

and median unbiasedness. The IV  estimator has surprisingly good properties even though 

the asymptotic theory used for its construction does not hold for this set of parameter 

values.

Table 10.2 contains the means and medians for <p'n and <PnL when n =  512

based on 3000 replications. The bias tends to be largest for the IV estimator, but the

difference between 4>̂ LS and (p’̂  is smaller than the difference of the former with . 

** O LS  *  /

The bias for (pn and 4>n increases with <j>. For a fixed <p, it is largest when y 1 =  .5. The 

bias of the M L  estimator, on the other hand, is little affected by the parametrization of

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

10

a

6

4

2

0
0.70 0.75 035 1.10

O L S --------------(V  AflCH-ML

Figure 10.2: Empirical density of parameter estimates for an AR(1) model with <p =  .9 
when the errors have no ARCH effects
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Figure 10.3: Empirical densities of estimated AR parameters when <p =  .9 and =  .9
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Table 10.2: Means and Medians
Model: yt = <hlt-1 +  et £t = tith \^  ht =  0.1 4- 7 i£t - i

<f> 7 i

<t>
Mean

O L S
n

Median
X1V
r n

Mean Median

j ~M~L
&TI

Mean Median
0 . 0 0 -0.0007 -0.0006 -0.0006 -0.0005 -0.0007 -0.0007
0 . 0 0.5 -0.0025 -0.0014 -0.0024 -0.0016 -0.0009 -0.0009
0 . 0 0.9 0.0006 0.0000 0.0009 -0 . 0 0 0 2 0 . 0 0 1 1 0.0009
0.5 0 0.4978 0.4994 0.4969 0.4980 0.4977 0.4992
0.5 0.5 0.4927 0.4935 0.4908 0.4919 0.4987 0.4995
0.5 0.9 0.4770 0.4830 0.4694 0.4780 0.4945 0.4984
0.7 0 0.6962 0.6969 0.6948 0.6957 0.6962 0.6970
0.7 0.5 0.6933 0.6950 0.6913 0.6933 0.6979 0.7000
0.7 0.9 0.6779 0 . 6 8 8 8 0.6733 0.6847 0.6945 0.6992
0.9 0 0.8965 0.8981 0.8947 0.8962 0.8965 0.8982
0.9 0.5 0.8948 0.8977 0.8933 0.8957 0.8982 0.8992
0.9 0.9 0.8850 0.8925 0.8860 0.8921 0.8984 0.8999

Sample size is 512. Results are based on 3000 replications.

the model.

10.2. Covariance Matrix Estimation

Estimation of covariance matrices for conditionally heteroskedastic errors is considered in 

the literature by White[95]. Newey and West [76], Andrews[3] and Andrews and Monahan[4].

_ - OLS . .In our case, the covariance of <pn is given by

var L 5  ~ <£o) =  (10‘5)
1=1 /  \  £=2 5=2

Estimation of ^  Y^t=v 5 Zs= 2  ^ ty t- i^ s V s - i  is carried out in White by

Vw  =  X ^ ? y t2 _ i

£=2

( 10 .6 )
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Table 10.3: Standard Deviations, Mean Absolute Errors and Mean Squared Errors
Model: Vt  = <fryt-1 4- Et Et =  U th 1/ 2 h t  =  0 . 1  +  7ie?-i

<t> 7i SDV

~,oLS
<Pn
MAE MSE SDV

X1V
< P n

MAE MSE SDV

".ML
<Pn
MAE MSE

0 .0 0 0.0442 0.0351 0 . 0 0 2 0 0.0441 0.0350 0.0019 0.0445 0.0353 0 . 0 0 2 0

0 .0 0.5 0.0759 0.0591 0.0058 0.0757 0.0589 0.0057 0.0489 0.0391 0.0024
0 .0 0.9 0.1429 0.1070 0.0204 0.1402 0.1045 0.0196 0.0954 0.0605 0.0091
0.5 0 0.0384 0.0308 0.0015 0.0384 0.0308 0.0015 0.0386 0.0309 0.0015
0.5 0.5 0.0609 0.0485 0.0038 0.0590 0.0473 0.0036 0.0409 0.0324 0.0017
0.5 0.9 0.1213 0.0893 0.0152 0.1162 0.0855 0.0144 0.0812 0.0499 0.0066
0.7 0 0.0321 0.0257 0 . 0 0 1 0 0.0321 0.0259 0 . 0 0 1 1 0.0322 0.0259 0 . 0 0 1 1

0.7 0.5 0.0473 0.0371 0.0023 0.0448 0.0356 0 . 0 0 2 1 0.0314 0.0248 0 . 0 0 1 0

0.7 0.9 0.0958 0.0687 0.0097 0.0871 0.0616 0.0083 0.0640 0.0366 0.0041
0.9 0 0.0198 0.0158 0.0004 0.0199 0.0161 0.0004 0.0199 0.0158 0.0004
0.9 0.5 0.0259 0 . 0 2 0 1 0.0007 0.0239 0.0192 0.0006 0.0175 0.0136 0.0003
0.9 0.9 0.0487 0.0342 0.0026 0.0376 0.0264 0.0016 0.0287 0.0176 0.0008

Sample size is 512. Results are based on 3000 replications.

Table 10.4: Coverage Probabilities 90%
Model: yt —  <Pyt-i +  £t Et = m ! ' 2 ht = 0 . 1  +  7 i £ ? _ i

<t> 7 i

W NW
n 1 / 5

NW
7 I 1/ 4

NW
n 1 / 2

OLS P-OLS P-IV

0 . 0 0 0.8997 0.8897 0.8880 0.8763 0.9007 0.9590 0.9590
0 . 0 0.5 0.8890 0.8780 0.8757 0.8510 0.6790 0.8663 0.8660
0 . 0 0.9 0.8677 0.8280 0.8177 0.7517 0.4503 0.7773 0.7760
0.5 0 0.9010 0.8883 0.8887 0.8703 0.9043 0.9587 0.9587
0.5 0.5 0.8903 0.8827 0.8800 0.8540 0.7147 0.8827 0.8790
0.5 0.9 0.8710 0.8293 0.8173 0.7540 0.4793 0.7953 0.7840
0.7 0 0.8997 0.8907 0.8900 0.8707 0.9003 0.9560 0.9560
0.7 0.5 0.8850 0.8770 0.8707 0.8400 0.7460 0.8933 0.8890
0.7 0.9 0.8677 0.8420 0.8247 0.7527 0.5140 0.8157 0.7840
0.9 0 0.9030 0.8980 0.8957 0.8693 0.9040 0.9583 0.9583
0.9 0.5 0.8900 0.8863 0.8830 0.8463 0.8117 0.9243 0.9167
0.9 0.9 0.8790 0.8797 0.8710 0.7830 0.6190 0.8690 0.8163

Sample size is 512. Results are based on 3000 replications.
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Table 10.5: Coverage Probabilities 95%
Model: yt =  (fryt-i -het et =  nth}/* ht = 0 .1 + 7 i£ t- i

7 i
White NW

n 1/ 5

NW
rc1/ 4

NW
n 1/ 2

OLS P-OLS P-IV

0 . 0 0 0.9507 0.9473 0.9460 0.9340 0.9530 0.9803 0.9803
0 . 0 0.5 0.9400 0.9380 0.9357 0.9170 0.7630 0.9210 0.9210
0 . 0 0.9 0.9227 0.8927 0.8843 0.8323 0.5230 0.8483 0.8447
0.5 0 0.9500 0.9457 0.9457 0.9313 0.9513 0.9833 0.9833
0.5 0.5 0.9373 0.9343 0.9303 0.9147 0.7960 0.9353 0.9303
0.5 0.9 0.9293 0.8990 0.8873 0.8203 0.5493 0.8660 0.8543
0.7 0 0.9463 0.9413 0.9390 0.9253 0.9517 0.9830 0.9830
0.7 0.5 0.9390 0.9357 0.9323 0.9087 0.8247 0.9477 0.9460
0.7 0.9 0.9260 0.9180 0.9043 0.8377 0.5823 0.8863 0.8550
0.9 0 0.9510 0.9483 0.9450 0.9220 0.9517 0.9857 0.9857
0.9 0.5 0.9440 0.9380 0.9363 0.9137 0.8803 0.9627 0.9563
0.9 0.9 0.9407 0.9450 0.9413 0.8623 0.7007 0.9253 0.8850

Sample size is 512. Results are based on 3000 replications.

where et = y t — 4>n y t - 1 - This estimator accounts for conditional heteroskedasticity but 

not for autocorrelation in the errors. However, Vw is consistent under the martingale 

difference assumption for et- Newey and West[76] account for autocorrelation by using

m i  n
V W  =  To -b 2  ^  fc {j/m ) Tj, Tj = -  ^  etyt- i£ t - jy t - j - i  (10.7)

;= l n t=j+ 2

where k ( j / m ) is the Bartlett kernel

{
1 — |x| for |x| <  1 

0  otherwise

Andrews[3] obtains optimal choices for the bandwidth parameter m. The optimal band­

width is zero in the case of no autocorrelation in the errors. In this case, V ^w  =  To, which 

yields V^w  =  VW- We examine whether this choice is optimal in our case by reporting
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Vn w  for a bandwidth m  =  n 1//2, rc1/4, n 1//5.

Instead of estimating (10.5) nonparametrically we can use the results from (10.3) to 

construct a parametric estimator of the covariance matrix based on consistent estimates 

of cj) and Oi. In particular, we define

( l - 0 ) 2 "-2
Vp - o l s  =  V . 4 y- T  4> V i ,  (10-8)

where estimation of Oi+\ is discussed in Section 9. In the same way, we also obtain a 

covariance estimator for the I V  procedure as

V p - i v  =
n — 2

i= 0

- l
(10.9)

Tables 10.4, 10.5 and 10.6, respectively, contain empirical levels of a t-test of the two 

sided hypothesis (j> = 4>q. These levels can also be interpreted as coverage probabilities 

of an interval constructed around the estimated parameter. The coverage probabilities

represent the empirical frequency of the event (pn — 0 O| /\Jvar{4>n) > Z i - a / 2 for a = 0 .1 ,

0.05 and 0.01 respectively where Z i_ a / 2 is the 1 — a /2  quantile of the standard normal

distribution. The variance of the estimator is estimated by four different procedures when 

~  O LS  ~

0 n =  4>n , namely, V w ,Vnw  and Vp-OLS• For comparative purposes, we also report

Vo i s  = ^ 2(n H r= 2  2/?-i)-1 ' whieh*s inconsistent. When the covariance estima­

tor is Vp-iv-

The results in Tables 10.4, 10.5 and 10.6 confirm what is expected by theoretical argu­

ments. Vq ss is roughly equivalent to Vw when there is no conditional heteroskedasticity,
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Table 10.6: Coverage Probabilities 99%
Model: yt =  (pyt-i 4 -  £t Et =  uth1/ 2 ht = 0.1 4 -  7 i £ £ - i

7 i

White NW
n 1 / 5

NW
n 1 / 4

NW
n 1 / 2

OLS P-OLS P-IV

0 . 0 0 0.9767 0.9760 0.9747 0.9663 0.9787 0.9933 0.9933
0 . 0 0.5 0.9787 0.9767 0.9750 0.9567 0.8380 0.9613 0.9610
0 . 0 0.9 0.9607 0.9497 0.9420 0.8967 0.5907 0.9033 0.9007
0.5 0 0.9787 0.9773 0.9757 0.9667 0.9807 0.9953 0.9953
0.5 0.5 0.9747 0.9703 0.9690 0.9540 0.8660 0.9730 0.9710
0.5 0.9 0.9617 0.9523 0.9420 0.8853 0.6257 0.9197 0.9093
0.7 0 0.9777 0.9760 0.9760 0.9597 0.9810 0.9967 0.9967
0.7 0.5 0.9757 0.9723 0.9713 0.9573 0.8897 0.9750 0.9730
0.7 0.9 0.9637 0.9670 0.9590 0.8993 0.6690 0.9317 0.9130
0.9 0 0.9823 0.9803 0.9767 0.9590 0.9850 0.9953 0.9953
0.9 0.5 0.9733 0.9737 0.9720 0.9573 0.9340 0.9837 0.9813
0.9 0.9 0.9787 0.9807 0.9790 0.9310 0.7700 0.9593 0.9347

Sample size is 512. Results are based on 3000 replications.

but deteriorates dramatically as increases. Overall Vw has the most accurate coverage 

probabilities. The quality of V^w  deteriorates with increasing bandwidth. These two 

results confirm that m  =  0  is the optimal bandwidth choice.

The performance of Vp - o l s  is best when =  .5. However, even in this case, it is 

not as accurate as Vw- For values of 7 ! > \ / l /3 ,  the asymptotic approximation leading 

to V p -o ls  does not exist. This is reflected in biased coverage probabilities. Somewhat 

surprisingly, bias also exists for =  0. The same characterizations also apply to Vp-iv-

10.3. Relative Efficiency under Misspecification

In this section, we analyze the finite sample efficiency of the three estimators under alterna­

tive generating mechanisms for the conditional heteroskedasticity. We consider ARCH(2), 

GARCH(1,1) and stochastic volatility models. While the IV  estimator is still valid under 

these circumstances, the AR C H -M L  estimator now is misspecified. In particular the es-
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Table 10.7: Relative efficiency of OLS with GARCH(1,1) innovations
Model■■yt =  <hn-1 VEtEt =  uth \/2ht —  0 . 1  +  0.3ej_j ■+■ 0 . 6 / i f - i

<i>

AlVVn
n=512

}ML 
Vn XlvVn

n=1024
Vn

0.925 0.9501 1.1253 0.9368 1.1253
(0.0470) (0.0557) (0.0242) (0.0291)

0.950 0.9518 1.0040 0.9091 1.1370
(0.0457) (0.0482) (0.0235) (0.0294)

0.975 1.4346 0.8818 0.9650 1.0303
(0.0668) (0.0410) (0.0249) (0.0266)

0.990 1.0561 0.8979 0.9770 0.8689
(0.0481) (0.0409) (0.0252) (0.0224)

timated conditional variances h t are inconsistent. This inconsistency is particularly severe 

for the Stochastic Volatility process where ht is independent of the Ut sequence.

Table 10.7 summarizes the results for the case when the generating mechanism is

yt =  <fryt-i+et (1 0 .1 0 )

Et =  n t h 1/ 2

ht =  To +  7i£t_i + 7 2 ^ -1  

ut ~ N (  0 ,1 ).

Starting values are yo = 0, ho =  0 and eq =  O.We focus on values for t x =  .3 and 

7 2  =  .6 . In general, the volatility process for the GARCH specification is much smoother 

than for the ARCH case. This is the reason why the potential gains for the IV  procedure 

are smaller than in the ARCH case. Not surprisingly, the A R C H -M L  estimator (10.2) loses 

its efficiency properties. It is even less efficient than simple O LS  when the autocorrelation 

coefficient is not too large, i.e., (j) < .975.
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In Table 10.8 we report the results for the case when the true generating mechanism 

is an ARCH(2) process. The data are now generated by (10.11) where the parameters 7 t 

and 72 are chosen to reflect moderate and strong conditional heteroskedasticity.

yt = (jxyt-i+et ( 10 . 11 )

et =  uth,y2

ht =  7 o + 7 ie t- i+ 7 2 £t-2

U t'S'N  (0 , 1) .

Starting values are yo =  0 and£_i,so =  0. In particular, the parametrization (7i,7o) =

(.5, .4) implies infinite fourth moments for £t. In this case the asymptotic distribution of 

•  O LS<f>n is not normal and the formal derivation of the IV  procedure is not applicable to this 

case. Nevertheless the simulation results show strong efficiency gains for the IV  procedure 

for this case. The misspecified ARCH estimator is now less efficient than simple O LS  in 

three out of four cases. The empirical densities for n =  1024 and (0 , 7 1 , 7 2 ) =  (-9,-5. .4) 

are shown in Figure 10.4.

Finally, Table 10.9 contains the simulation results when the true generating mechanism 

is the following stochastic volatility model

yt = (jryt-i+ct (1 0 .1 2 )

et = ut exp(ht/2)
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Table 10.8: Relative efficiency of OLS with ARCH(2) innovations
Model:yt =  W t - 1  +  £t £ t-= uth\/2 ht == 0 . 1  +  Ji£ t.-1 +  7 2 £ i - 2

<t> 7 i 7 2

X1V
n=512

j ML
<Pn XIV<Pn

11=1024

j’ML
<Pn

0.5 0.3 0 . 2 0.9897 1.0215 0.9781 1.0843
(0.0486) (0.0501) (0.0253) (0.0280)

0.5 0.5 0.4 0.9680 1.4400 0.9585 1.5088
(0.0491) (0.0731) (0.0247) (0.0390)

0.9 0.3 0 . 2 0.9632 0.8404 0.9366 0.8690
(0.0462) (0.0403) (0.0242) (0.0224)

0.9 0.5 0.4 0.8837 1 .2 0 0 0 0.7843 1.2963
(0.0418) (0.0568) (0.0203) (0.0335)

Relative Efficiency is defined as SIv / S q LS or S  m l / S o l s respectively
where S 2 is the estimated variance of the estimator d>- Numbers in parenthesis 
are asymptotic standard deviations of the variance ratio. Results are 
based on 3000 replications.

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.05

OLS IV • ARCH-ML

Figure 10.4: Empirical densities for estimators of the autoregressive parameter when the 
errors are generated by an ARCH(2) model with q> =  .9, =  .5 and 7 2 =  .4.
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Table 10.9: Relative efficiency of OLS with stochastic volatility innovations
Model: yt =  (fry i - i  +  £t £t =  ut exp(/it/ 2 ) ht = 7  ffit- i + v t

4> 7 i

4>n
n =  512

'.ML
<Pn

11 v
K
n =  1024

<Pn

0.7 0.50 0.9501 1.4299 0.9461 1.4926
(0.0357) (0.0537) (0.0244) (0.0385)

0.9 0.50 0.9447 1.2109 0.9628 1.2125
(0.0375) (0.0480) (0.0249) (0.0313)

0.5 0.90 0.9557 7.2483 0.9557 7.2483
(0.0247) (0.1872) (0.0247) (0.1872)

0.7 0.90 0.8315 7.4975 0.8154 9.2688
(0.0215) (0.1936) (0 .0 2 1 1 ) (0.2393)

0.9 0.90 0.7062 5.8414 0.5970 8.6569
(0.0182) (0.1508) (0.0154) (0.2235)

0.5 0.95 0.9475 8.9600 0.9475 8.9600
(0.0245) (0.2313) (0.0245) (0.2313)

0.7 0.95 0.9019 8.9705 0.9146 8.9516
(0.0233) (0.2316) (0.0236) (0.2311)

0.9 0.95 1.1910 7.3298 0.7370 9.9652
(0.0308) (0.1893) (0.0190) (0.2573)

Relative Efficiency is defined as S 2v /S qLS or S \ {L/ S ‘qLS respectively 
where S 2 is the estimated variance of the estimator <j>. Numbers in parenthesis 
are asymptotic standard deviations of the variance ratio. Results are 
based on 3000 replications.

ht =

ut ~ N  (0,1), v t ^  N  (0 ,1).

Starting values are yo = 0 and ho =  0. The misspecified ARCH estimator now is less 

efficient than O LS  in all cases considered. When the dependence in conditional variances 

as measured by 7 X is strong, the inefficiency of the ARCH estimator is extremely large 

with an eight to nine fold increase in the variance relative to OLS. The IV estimator on 

the other hand has properties similar to the ARCH and GARCH cases. The breakdown 

of the ARCH estimator is documented in Figure 10.5.
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Figure 10.5: Empirical densities for estimators o f the autoregressive parameter when the 
errors are generated by a Stochastic Volatility model with (f> =  .9, =  .9.

11. C onclusions

This dissertation analyzes the consequences of higher moment dependence between the 

errors and the regressors in the context of the univariate linear time series model. Promi­

nent parametric examples of such models are mainly encountered in financial econometrics. 

They include ARCH, GARCH and stochastic volatility models. Here the focus is on the 

estimation of the parameters of the linear time series model. No parametric assumptions 

about the conditional variance process are made. Instead, higher moment dependence is 

treated as an unobservable nuisance parameter which is estimated nonparametrically.

It is shown that the asymptotic covariance matrix of estimators based on Gaussian 

criterion functions contains fourth order cumulant terms. This result is a special case 

of models with a more general dependence structure of the errors. The assumption of 

martingale difference errors maintained in this paper allows us to decompose the fourth
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order cumulant term appearing in the covariance matrix of the score function. The de­

composition in turn is used to derive a lower bound for the asymptotic covariance matrix 

of Gaussian estimators. It is shown that the lower bound is related to the class of in­

strumental variables estimators with instruments which are linear filters of the innovation 

sequence.

The lower bound covariance matrix is used to identify the optimal instrument. The 

optimal instrument is constructed from reweighting the innovation sequence in a way to 

minimize the asymptotic variance of the parameter estimates. Intuitively the innovation 

sequence is weighted in a way to balance the signal of the innovation as measured by the 

impulse response function and the noise generated through the dependence of squared 

errors.

Unobservability of the optimal instrument necessitates a semiparametric approach. It 

is shown that the optimal filter can be consistently estimated from fourth order cumulant 

terms of consistent first stage regression residuals. Computational efficiency is achieved 

by formulating the instrumental variables estimator in the frequency domain. This allows 

for the use of Fast Fourier Transform algorithms to compute the optimal filter and the 

optimal instrument. The complexity of the algorithm can thus be kept at O (n lo g n ).

The paper offers an alternative way to treat conditionally heterogeneous processes. 

Parametric approaches decompose the process into independent sources of randomness 

by assuming a certain generating mechanism. Here the focus is not on the conditional 

but on the unconditional distribution of the errors. It is shown that instrumental variables 

techniques can be used to correct the statistical properties of the score process in a way that
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accounts for the omitted higher moment dependence. The advantage of the instrumental 

variables approach lies in the fact that it remains valid in situations where the form of the 

conditional density is unknown and too complex to be estimated nonparametrically. It is 

clear that the ideas developed here can be extended to related problems. These include 

multivariate extensions, nonlinear models and regression models. The author is currently 

working on these extensions.
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A. A ppendix  - Lemmas

In this appendix the limiting normal distribution for the Whittle likelihood is derived 

under the conditions of Assumption (Al).

First a CLT will be stated for the error process at.

Lem m a A .I . Under Assumption (A l) the following statements hold:

ii) for each m  € N+ \  {1}, m fixed, the vector 5Z"=i [£t£ t-1 , =► N(0,Q) with

Proof. For i) we note that since E  {at \ P t-i)  =  0 by assumption l.ii) at is a martingale 

difference sequence. Then by the martingale CLT (see Hall and Heyde[39], Theorem 3.2, 

p.58) we define ant = s~ let where sn =  \/var(22t=i e£) =  y/ncr. Now

O jz  S t= i  £t N (0 ,cr2)

c r ( l ,  1 )  - F  ( T 4  • • •

er(m, 1 ) ••• a(m ,m )+ (T 4

P  (e? 1 {|et | >  Ay/ncr} \ T t- \ )  > W * 2
t

< E  l E t E  (£t l  {lgt| > A y/no-} | ^ t - i )  |

<

E t g (g?1 (lgtl > x V ^a })
qa^n

<
T](T n — * o o
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where the first inequality follows from Markov’s inequality and the third inequality follows 

from the fact that s t is strictly stationary. Convergence to zero is then a consequence of 

the finite unconditional variance. Next

> 7 7

=  P >77

E  (E  (e? I ^ - 0 - a 2) (E  \ -  a2)
n 2T]2

E a o-(a,a) <  E J o ~ ( s , s ) |  _  n
—  9 — 97177*  nr]4* n-+oo

where the first inequality follows from Chebychev’s inequality. This establishes the condi­

tions of the martingale CLT.

For part ii) we note that individually all the terms £t£t-k with k > 1 are martingale 

differences. Now define Y[ =  [£{£t-i> — . Then also E(Yt \ T t - 1) =  0 so that Yt

is a vector martingale difference sequence. To show that Yi Yt => N (0, Q) it is enough 

to show that for all £ € Rm such that d  £ =  1 we have ^ d Y t  =► iV(0,1) where now 

y£ = Q~1/2y£ and Q =  EYtY[. This is easily evaluated to be

Q - E

c-2-2
£ t £ t - 1 • ‘ £ t £ t - l £ t - m < t(1 , 1) +  a 4  ■ • < j ( l ,  771)

e f e t - i e t - m  • ■ ■ f 2 f 2  £ t £ t —m c r ( m ,  1) < j ( m ,  h i ) ■+■ <JA

Next we note that for any £ € Rm such that d£ = I, £ fixed, ( Y t is a martingale by linearity 

of the conditional expectation and the fact that m  is fixed and finite. We can therefore
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apply the martingale CLT used in part i) for the variable Ynt = Again we have to

check the conditional Lindeberg condition. In particular we consider

P

E

>  V

F t - l

ijn

ijn

<

E ^ ( ( ^ ) 2 l { | ^ | > A v ^ } )

rjn

,E7 1 > A V n})
0 for all 77, A > 0

where again we make use of the fact that IY t  is strictly stationary and that

which is clearly finite so that the tail bound in the expectation of the last inequality 

converges to zero for ail 77, A > 0. The second condition of the martingale CLT requires 

that X ^O 'rit I F t- 1 ) 1- Since for all of the examples provided it is the case that

E(Ynt | P t-i)  is strictly stationary, this convergence will also hold a.s. which, however, is 

not required for the proof of the CLT, so the fact will not be further exploited. To prove 

the convergence condition we use
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Now since measurable functions of ergodic random variables are ergodic and E (f'Y t)2 =  1. 

we have from the ergodic theorem ^ ^ ( / Y j ) 2 — 1 ^ + 0 .  Next we note that (^Y t)2 is T t 

measurable by assumption. Also (/Y j)2 is strictly stationary such that

P  ( / y t) 2 > x  = P  ( / Y i ) 2 > x  < cP  ( / Y i ) 2 > x

for all x  > 0, t > 1 and c > 1. Then by Theorem 2.19, Hall and Heyde[39] it follows that

This now establishes that '^ ,E (Y 2t \ E t- i)  — 1 =  op(l) as required. The proof of the CLT 

is complete since t  was fixed arbitrarily. ■

Next the distribution of the estimators is derived in the following lemmas. The proof 

follows the standard argument of Hannan [42] with necessary modifications made where 

required. The details of the proof also follow closely the exposition of Brockwell and 

Davis[15].

L em m a A.2. Let In,yy( A) be the periodogram of { y i , . .. ,yn} and /„,£e (A) is the peri-
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odogram of { e i,. . .  ,en} . Assume et satisfy Assumption (Al) and that yt = ^ j £t--j

with spectral density ^gyy(Po, X) such that YlJLo \^j\ b’l1̂ 2 < 0 0 • Let <7 (.) be any con­

tinuous even function on [—ir, tt] —*• 1R. with absolutely summable Fourier coefficients 

{z/t, —00 <  k  <  00} , then for any rj,e >  0

In,yy (A) <7(A) dX -  £  £  / n,ee ( A ) ^ ( / 30, A)<7(A )dX > r ^ j < e

as n  —► oo.

2
Proof. First an expression for Rn (A) =  Inm  (A) -  f- I n,es (A) 9 yy(Po, A) is obtained. Let 

uiy (A) =  n -1/2 ytelA£ be the discrete Fourier transform of the data. Then

ujy(X) = n 1/2 Y 2 Y l ^ j £t- je  lXt 
j =0 £=1

=  n ~ 1/2 ^  ipje~lXj ^  £t- je~lX̂ ~j) 
j=o £=1

= n -1/2 y^i/>7-elAj ^  ctelA£
J=0 £=l-j

=  n -1/2 |  ^ e £e_lA£+  ^  e£e_a£ -  cte-,A£
j=0 y £=1 £=l-j £=1

OO

=  if) (e -lAj a;£ (A) +  n - 1 / 2 ^  ipje~tXW nj  (A) (A .l)
i=o

such that

(etA) | 2 / n,e£ (A)

=  x/j  (e_,A) we (A) n ~ l /2  ^  x p j e - ' ^ U n j  (A)
i=o
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Then using the Markov inequality we have

p ( y ^ \ f  In,m (A) (A) /„ ,«  (A) gyy((30, X)c (A) dX

E -^~  I Rn (A) c (A) dX 
V I J —n

so that it is enough to show that Esjn f* K Rn (A) <: (A) dX 0. First consider

E \/n / 7T OO

tf> (e~iX) u>£ (A) n " 1/ 2 Y i  * je~iXjUnj (A) <r (A) dX
j=o

/' tc  o o  o o  I o o  n
E E E  E E ̂ Z m S t  (er _, -  en- l+r) e~iX(-k+m~r+t  ̂dX

I •l r  fc= 0  1=0 r = l  m = —o o  t = l

Then for fc, /, m, and r  fixed such that I < r  — k + m  < n

E  r  ( * r - /  -  £ n - f + r )  e - ^ + ™ - ^ ‘ ) d A
| - ' - ’r  t = l

=  E  fo - i  -  e „ - i+r) r  e - iA(fc+— 1r+t)dA
|t=i •/ ~7r

— |^r—fc—m i^r—l £n—l+r) I

<  IV ’feT/’z ^ m l  ( £  | £ r _ f c - m e r - z |  +  £  | £ r - f c - m £ n - Z + r  | )

<  \ i > k ^ m \  ( a tl 5 _ m  +  a n - l - k - m )  •
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where a* is short hand notation for otk,k- Now summing over k, I, m gives

/ ir 00

ip (A) n -1/2 ^  ipje~lXiUnj  (A) <r (A) dA

j= 0

s  »-i/2e e :  e  WklPlZml 1*1 + Qn-/-fc-j)
fc=0 i=0 m= - 00

< 2 supa£/2n " 1/2] r  ^  1*1 -* 0.
k = 0  1= 0 m = —o o

Next consider the term n 1 

obtained by

52°% ipje 3 Unj . First a bound for the expected value is

En - 1

i = 0

T l ] =  En~l E  W k e - ^ - V U r *  (A) Unk (-A)
j = 0  Jfc=0 

00 00

S "-'EE
j= 0  fc=0

 ̂ n_1 E E 1̂-11̂ 1 ( E  \u *  (A)i2)1/2 (£ ^i2)1/2
i=o fc=o

3=0

1/2

where the Cauchy-Schwarz inequality was used in the second inequality. Now we use the 

martingale property of et to bound E \Unj\2 .

E\U n j \2 =  E
n - j

E ^ A‘-E £tei
t= 1 —j £=1

iX t
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c ,e-iXt -  V "  e,e~iXt2-,t=i-j  - t e  2—>t=n—j+l
2

1  <  j  <  TL

=  j > n

o  j  =  o

r

E  E s e /  E t e /  ^ 5 e",A{£_s) /  =  {1 -  j , . - -, 0} U  {n -  j  +  1, . . . ,  n} 

-   ̂ E T ,s& iT ,te i£t£se~iHt~s) I  = { l - j , . . . , n - j } u { L . . . . n }

0  j  =  0

2 j a 2 1 < j  < n  

^  2ncr2 j  > n

0 j  =  0

=  2min(j, n)<x2.

This implies

n 1/2 (̂ IC/njI2) j < 2rr2 | n  1/2 ^  m in(j,n)1/2
j=o /  V J=°

Now

n ^  ^  IV’jl m in(j,n)1/2 < n 1/2 ^  |^ - | | j |1/2 +  ^
j=0 j=0 j=n+l

Since E ylo  l^jl l i l^ 2 <  oo it follows that

W 111̂ ’71)172 ^  n!™ 5 Z l^ iH j |1/2+nl/2 Z  K-l
j=0 \ i= 0  j=n+l

^  £ l ^  |b11/2 < °° -
i=o
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Pulling these results together gives

rK OO
2

E y / n IJ  —7T 3=0
? (A) dX

< 47T<T2 ( n  1/2 Y " \i/>j\ \ j f / 2  sup (A) — 0. 
j =0 I  Â [—w,tt|

Together these results imply

E y f H  I r  R n ( X ) c ( X ) d \
| * / — 7T

as had to be shown ■

Next a Lemma is stated which allows us to use the finite dimensional CLT proved in 

lemma A.l to approximate the limit distribution of a countably infinite dimensional vector 

of random variables.

Lem m a A .3. (Billingsley) Let X mn, Yn be random variables deSned on (Q,^7, P ) . Sup­

pose that for each m  X mn —> X m as n  —► oo and that X m X  as m —> oo. Suppose

further that

lim limsup P {\Xmn — Yn\ > e} =  0

for each positive e. Then Yn —► X  as n —► oo.

Now a general CLT for criterion functions based on the periodogram and involving 

sufficiently well behaved spectral weighting functions is presented.

Lem m a A.4. Let In%yy (A) be the periodogram of { y i,. . . ,y n} and d„i££ (A) is the peri-
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odogram o f {e i , . . . , e n} - Suppose the et satisfy Assumption (A l) and that yt = Yl'jLo Vj£t-j  

with spectral density |^g OT(/30, A) such that l^jl \J\ 1^ 2 <  0 0  • ^ et  ̂(•) be any con­

tinuous even function on [—7r, 7r] —► R with Fourier coefficients {zfc, - 0 0  < k <  0 0 } sucii 

that

£  1* 11*1
1/2 <  0 0

fc=i

and c (A) gyy{(30, X)dX = 0, then

n 1/2 r  In,yy (A) <T (A) dA ^  TV ( 0,4 £  f ]  **.,6*6 ,
“'_7r V /=! Jk=l /

with bk =  _oo 7W (A: -  j )  Zj.

Proof. It has already been established that

n 1/2 J *  In,yy (A) <r (A) dA -  n1/2^  j T  / n,££ (A) (̂/?0, A)< (A) dA =  op (1 )

so that it remains to show

nl/2̂ / I /n’££ (A)5yJ,(/3°’AK(A)d X ^ N { ° A ^ yf i a k 'l h b l

Let x  (X) = g(0Q, A)<r (A). Using the Fourier approximation

OO OO
iX k

X W  =  $ 3  £  7 yy(k - t i zi e
f c = —0 0  j = —0 0
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such that (27r) x (A) elXkd \  = YlJL-oo 7yy — j) zj- ^  follows that

Eww1'2 = E
fc= 1 fc=l

E 7y y ( k ~ j ) zi
J = - o o

1*11/2

<  E E  ^ ( f c - j O l N I A : ! 172
fc=l j=—oo

j= -o o  fc=l x WM

1/2

= E MW■ IU-|V2
J = - o o

OO

: P-TT72 E hw(*)ll*-b1l1/2(max | j | , 1) fc=̂ m

< E Nb'l1/2Ebyy(fc)Nfcl1/2<CX3-
j = —o o fc=l

Then define Xm (A) =  S|fc|<m &fcelAfc. Xm (A) converges uniformly to x  (A). Using Lemma 

(A.3) it has to be shown that for all e >  0,

lim lim su p P ' >«}-

where

n 1/2  r  In,ee (A) (Xm (A) -  *  (A)) dA =  n 1/ 2 ] T  7 ee (fc) 6 ,
'/ ~ ,r |fc |> m

with 7 ee (k) = A £ " =1,fc| etet+\k\. It follows that P 7 ££ (fc) =  0,

n - | f c |  n — |fc|

E%  (*) 7e (j) = s E E  £?etes£t+|fc|£s+|j|
t=l 5=1

1 V ^ ' 0. 2. - n ~  lfcl _
~  T)2 — n2 afcd-

i= l

where the second equality follows from the martingale difference sequence property of the
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errors. Using the Markov inequality we have

P  { |"1/2 £  (A) (xm (A) -  x(A)) d \

var (n 1/2 £ |S|>m "r„ (fc) 6yt)

n E|fc|>m Zfr|>m IL̂ a k,lbkbl 
e2

<  f  £  N

which in turn implies

limsup P  ( I n 1/2 f  /n,££ (A) (xm (A) -  X (A)) d \
n—OO U J-7T i > i

where C  =  supfci |afc,/| <  oo so that the result follows form

Um I £  l6fcl =  ° ’m—►oo I « I

From Lemma (A.l) we have

/ IT m

/n,«(A)Xm(A)dA =  2n^2 ^ % e (/c)bk
•7r J t = i

/ m m  >
- i  A - 1 0 , 4  a k,ibkbi

1=1 k=l

Letting ATm ~  iV (0,4 Ylh=i XlfcLi a k,ibkbi) it remains to show that X m —► AT where X
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N (0 , 4 ^ “ t YlkLi ak,ibkbi). By Billingsley [8], Theorem 7.6 it is enough to show

for all t. Since

E  =  g— HfcLi ak.ibicbt   ̂g— afc,i6»;6|

if Hk= i ak,lbkbi —> HfcLi a kjbkbi < oo. This follows by absolute convergence

from
o o  o o  /  o o  \  2

< sup |ckfc,i| ( 5 ^ N  ] < 0 0  
/=i fc=i k -1 Vfc=i /

the proof is completed ■
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B. A ppendix - Proofs o f Part I

P ro o f o f T heorem  3.3 Since 17 (/?, A) € C 2 [—7r, 7r] it follows from Lemma (A.4) by setting 

<; (A) =  / 1 7  (/?, A) for all I € Rp with ( l  =  1 that

>/n r  /„,££ (A) TI (0, X ) d X ^ N  (0 ,5 )
J —TV

with 5  =  4 JTfcli H S i  a k,i {n {3, A), eikX) (17 (/?, A), e,/A) . Next it is shown that the vari­

ance of the score process can be expressed as

B =  2cr2A ■+■ 2 f  f  f e2e£{^X)f](0,fi)T](0,X)dfjdX.  
J—TT J —n

Redefine the vector of Fourier coefficients as

bk =  ( i (0,X)  ,e lfcA)

with ji-th element

1>** =  (%  (& * ) .« “ *)•

B  can now be written more compactly as

OO OOOO
4<r4 ^  bkb'k +  4 Y 2  bkb'torik, I).

k= 1 fc=i (= 1

By Parseval’s identity we have 52Stli bkbk =  ^  V (/^ A) 77 (3, A) dA. Considering the 

derivatives of lngy3/(/3, A) implies immediately that bk = b-k and bo = 0. Using the defin-
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ition of f £2£e ([M, X) we note that a(k, l ) = f £2££ (A, fi) el(-kx+^  dXdfj.. By definition

<r(k,l) = a(—k , —I). Looking at a typical element of S S i  bkb'lcr(kj) we first note

OO OO
* £ £  bj,kbmtia(k, fy — £  £  bjtkbmi[cr(k, I)

f c = l  i = l  f c = — OO I — — OO

since a(k, —I) =  a{—k,l)  =  0 VI, fc > 0 by (2.2) and &o =  0- Then

Y  Y  bj,kbm,icr(k,l) = Y  Y  f  [  bjtke~tXkbi,me~tM f eie£( ^  X)dnd\
fc=—oo Z=—oo fc=—oo / = —oo — — ̂

=  r  r  j r  bJtke - 'Xk j r  blime - ^ lf £2e£(^X)d^dX 
J —TT J —TV k—_ oc m = —oc

/ 7T /*7T

/  flj ( f t  *7z (A  A) / £2£e(M, A)d/adA
•7T J —7T

where we used dominated convergence to exchange integration and summation in the sec­

ond but last line. Now the result follows from building up the matrix B  from its individual 

elements ■

P ro o f of C oro lla ry  3.4 The fourth order cumulant is defined in general as 

/ £ . . £ ( A 1 ; . . . , A 4 )  =  T  ce..e { u u . . , u ± ) e - i& U ^ } .
( ) Ul,...,U4 = —OO

Stationarity implies that c£..£(u1, .... U4 ) =  c£..£(ui -I- £,..., t/4  -t- t) for any t. Therefore 

fe..e(X\ , ..., A4 ) =  0 for Y^=i Aj #  0mod27r. We can thus choose ui =  0 without loss 

of generality. The fourth order cumulant spectrum f £..s(Xi, ..., A4 ) then reduces to (3.3). 

From the martingale difference property ce..£(0 ,112, U4 ) is non zero only if at least one
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Ui =  0 and all Uj <  0 for j  ^  i or iii = Uj >  0 and Uk < Ui for k ^  i, j .  It follows that 

Ce-eCO, U2 , ..., U4 ) can be replaced by <r(u, s) defined in (2.2) for u, s € {0, ±1, ±2,...} . This 

is the symmetry property of cumulants for stationary time series. The trispectrum (3.3) 

can be written by taking the restrictions for the mds case into account

(2tt)3 / £..£(A,M,-A )

=  £  £  £  c£..£(<z,r,s)e- ’« ? -‘>A+̂ >
s = —0 0  r = — 0 0  q=—oo

= E  E  C .A s , r , s ) e - * » +  ]T £
s = l  r = —0 0  S——00 q=—00

+ E  E  *••«(». «.»)«"<(*‘+(," )A) + £  £  cs..«(,,r,0)e-<''A+A'‘>
9 = 1  s = — o o  9 = —o o  r = —0 0

+  £  £  c£..£(g;S, s ) e - ^ A+̂ - sW +  £  £  c ,.£(0 ,r ,S)e - ‘̂ - iA).
s = l  9 = —0 0  s = —0 0  r = —o o

This is a list of all nonzero parts of the triple sum. Now for s > 0 and r < s we have 

ce..e(s, r, s) =  a(s, s —r ) and using k = s - r  we can rewrite L ^ = - 0 0  c£~e(s> r > s)e~irii = 

o"(s. k)e~l ŝ~h^ . In the same way c£..£(g, q, s) =  er(g, <7 — s) such that

9 = 1  s = —0 0  9 = 1  f c = l

and
0 0  5 — 1 0 0  0 0

£  £  Ce..£(9, S, S)e- t^ + (-l-)A )= £ g (T(s, fc)e-^-fcA )
S = 1  9 =  — OO 3 = 1  f c = l

Also for ij,s <  0 we have c£..£(g,0,s) =  cr(s,q) and the same holds for c£..£(0,g,s) and 

<*„.(«, h,0). Then E l , ^ E ^ „ < « . , ( 5 ,0 1. l e - iI H A =
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and the same is true for the other two double sums. Using the fact that cr(s, —q) =  

a(—s,q) =  0 for all s,q  >  0 we can now write

(2tt) /e..e(A, fi, -A) =  ^ ( /£2££(A, -A ) +  / £2££(/i, -jz)) 

+ /e 2££(^5 M) +  f e 2se(A> ~

Substituting into the fourth order cumulant part of the asymptotic covariance matrix 

now leads to

/ 7T /*7T
/  /£..£ (/*, A, -A*) T] ( 0 ,  f t )  V (07  A) dAd/z

-7T «/—7T
/ 7T /*7T

V {0, A) /  f e2ee(fi,X)T]{(p1n)dndX
"7T V -7T
/ 7T /»7T

*7 (A A) /  f £2£S( i i , -X) i] (<p, ix)di jdX.

-7T J - 7T

where we use J** fj (/?, fi)dfj. =  0 such that J* 77 (/?, A) dA f £2££ (^, —/z) V (0, f i )d f i  =  0

and the same holds for the term with / £2££(A, —A). Define

(A2££ * *)) (A) =  /  /e2££ (/*. ~ A) V (0» M) dH-J  —IT

U sing 77 (/3, A) =  77 (/?, —A) the result follows if ( /£2££ * 77) (A) is sym m etric as well, since  

then

/  tK/?,A) f  f e2ee (/j., A) T] (/?, /x) d/zdA
«/—7T w/—7T

f  V A) [  f £2£e(^i,-X)fi(0 ,iJ,)dndX.
J— 7T J— 7T
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But since

/  /e 2ee (Ai, —A) 77 (/3t pt) <//zc/A

=  f  V(P,p) [  / e2«  (a*i - A )  f] (0, A) dXd/j.
J—k J—n

= (feee * V) 00

and J l 7r f e2e£(f i , - \ )T](p,X)dX = f * v f e2ee{n,X)f}((3 , - X ) d X  by symmetry of t)((3, A). 

This completes the proof ■

P ro o f of T heo rem  4.4 For m  fixed it follows from standard results that for any non 

singular matrix Cm

{P ^C m P m y1 {PLCm^lmCmPm) (PLCmPm) 1 ~ ^  ( P ^ P m) ‘ > 0

which after pre and postmultiplying by (P^CmPm) is

(P'mCmSlmCmPm) -  ^  (i* CmPm) ( P ^ P m )  * (P'mCmPm) > 0

where > 0 here signifies matrix positive semi definiteness. While this inequality holds 

for all positive definite matrices Cm as long as m  is finite, further restrictions need to be 

imposed to guarantee that the inequality also holds in the limit. It is enough to require

that for all m the elements of Cm denoted by c™fc are such that rm < M  < oo and

c’icj < M  <oo, i.e. rows and columns are absolutely summable. Using the matrix
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( , \  1/2norm ||A || =  Ur A  A )  it then follow s from th e m atrix  version o f th e  triangle inequality  

that

P'mCmPm \\ = 2  2  bkbic'gi
1 Z = 1  

m m

S E E |M | l c"
Jfc=l i= i

\fc=i j
<  oo

for all m . T his th en  im plies that lim m P ^ C mP m ex ists  and has bounded elem en ts. B y  

definition all e lem en ts o f  f im are p ositive  and so  P^Cm^mCmPm is alw ays positive  defin ite. 

As before

771 771 771 771

\PlnCmQmCmPm\\ < ^ 3  5 3  5 3  5 3  If iC™bjC™j la fc.zl
fc=l 1=1 2=1 j = 1

771 771 771 771

<  su p  ia fc,,i 5 3 5 3 5 3 2 3 | h c3 6; c£
* 'Z fc=l 1=1 2=1 j= l

771 771 771 771

< sup î fci 2 3 2 3  ||6i6i1 2 3 2 3  lc^l K j I
fc 2=1 J = 1 fc=l 1=1

rn m
< s u p |a fc|M 2 ^ 5 ^ | | 6’6;

fc t=i j=i
<  oo

T hen lim m exists and has bounded elem ents. F inally  lim m_oo

exists since all elem ents of f l^ a r e  b ou n d ed  by Lem m a (4.3). Now clearly Cm =  Im sa t­

isfies the sum m ab ility  assum ptions an d  Cm =  is th e  optim al transform ation . T aking  

lim its th en  estab lishes the result. ■

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

C. A ppendix - Proofs o f Part II

P r o o f  o f  L e m m a  8.1 F irst we show  th at fa  (A) €  L\ [—7r, 7r] w hich follows from \fa (A)| d A

Yl’jL-ca ~ ^  <00. N ext note for a typ ical e lem ent k

f  /aCA-OfatoOLfcdfJ  —TT

= r  /a (A -  0  ( E  ̂ e - ^ j+k) +  E  ̂ e^ (j+fc) )
\ J = 0  j= 0  /

=  T  e  ( E ^ e - ^ +fc)+ E ^ ^ (i+fc) ] d?
i= —00 y = o  j= o  J

= / " £  E  ^;e"*y+fc)e~i(A"°' + E  E
~ ir j = 0 / = —00 j= 0  Z= —00

=  E  frj+fc^Je~,A(:'+fc) +  E  a-j-fc^ JelA(-,+fc) 
j=o j=o

= £  _^_e-*AO+A:) + £  J l _ eiXU+k) -  ̂  ( E  ̂ e-iA(i+fc) + E  ̂ e‘A(i+fc)
i= 0  Qj+fc _/=0 Q j+fc \ j r = 0  j= 0

=  ^ i / > , f c  ( A )  +  ( — A )  —  ^ 4 ^ 7  ( 0 )

such that the result follows. ■

P r o o f  o f  P r o p o s i t io n  8.2  W e start by defin ing tw o rem ainder term s (A) and  

i?£ (A) where

* i(A ) =  n - w j ^ ^ e - ^ U n j i X )
j = 0

OO
i£(A ) =  ^ ( ^ ^ ( e - ^ n - ^ E ^ e ^ n j C A )

j= 0
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+ n~ 1/2a(A)* 0 ^ ^ e - a ^ nj- (A) 
j=o

with Unj  (A) =  Y!t=l~] £te lXt +  £"= i £te lXt and

rl>j =

^ aj+l

^3a3+P

such that R ^  (A) is a scalar and Z22 (A) is a p x 1 vector. Then, using equations (A.l) and 

(8.9), In>zy (A) can be written as

i»,zy (A) =  (A) In,yy (A) <f> (e"a ) a (A) j  + 1* (A) In,£e (A) +  Rn (A)

and in the same way

In,yz (A) =  i* (A) In,yy (A) <j> (e,A) a (—A) <b + I* (A) In,£S (A) +  Rn (-A)

where

Rn (A) =  4>-l {ei^ u £(X)R^(X) + Ri ( - X) R^( X)  

-F/y, (A) ui£ (A) Rjt (A) +  ly (A) |i?^ (A) |2
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such that

f  (In,zy (A) +  In,yz (A)) dX 
J— 7T

=  [ 2  £  In,yy (A) Re [/* (—A) 0  (e 'A) a (-A )] ,

+2 [ "  Ir, (A) /„,£E (A) d \+  f  Rn (A) +  Rn (—A) dA
J —IT J — K

<t>

(C.l)

Alternatively one has also

In,yz (A) a (-A) =  / n,w (A) i* (—A) 0  (elA) a  (-A) +  R£ (A)

with

RP (A) =  0 - 1 (eiA) a;e (A) r £  (A) +  R* (-A) R^ (A)

such that f  In>yz (A) Re [a (—A)] dA =  f  In<yy (A) Re [/^ (—A) 0 (e,A) a (—A)J dA+f  Re [R£ (A)] dX. 

Now if /R e[R n  (A)] dX =  op (n-1/2) it follows that

x /n ^ 0 - 0 j  = J  /n,to (A) Re Ẑ, (—A) 0 ^e,Aj  a (—A) dA
- 1

X y / n r  It, (A) /„,ec (A) dX+  r  Rn (A) + R n ( - \ )  dX 
J — TT 7 —7T

Since I$ (A) E C2 [—7T, 7r] and <j> (elA) E C2 [—7r, 7r] it follows from Lemma (A.4) that

- 7T /  OO /

^ j l r ,  (A) / n,££ (A) dX=$> N  I 0 , J 2 a J ( 1V (A) > e'Ai) (A), elAi)
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where the matrix a i {̂ ? W  > e‘A*) Qv W  > e'A/) has typical element

L/=i
y !  a j+ kVl^< t> ,j^< t> J+ \k-l\ ■ 

k ,l  3=0

Using lemma (8.1) it is easy to show that

(A) ,e 'Aj) (lv (A) ,e iAj)
j=i

■  £,£('■ (A -  0  fj (<t>, f ) 4- ^ 7 )  (0, A) ) 77(0 , A) d£dA.

The result then follows if v/n Rn (A) dA =  op (1). We discuss the four different types of 

remainder terms separately. Since 1$ (A) € C 2 [—7r, 7r] the proof of Lemma (A.2) can be ap­

plied to I4  (A) ujs (—A) H i (A) and (A) | i ^  (A) |2 . To show that ^  (A) lj£ (-A) R^{X)dX

op (1) it is enough to show that E s/n  | ( A )  cu£ (—A) R^ (A) dX —► 0. Using the defini­

tion of R* (A) one has

E V ^ \  f  1+ (A)ui£ (—A) R ^  (A)dAl
\J — 7T I

< E sfa  Ut, (A) 0  (e~a ) 0 ’ 1 (eiA) co£ (-A) R^ (A) dA

-\-E\/n r  0 ’ 1 (e iA) u £ (-A) n~1̂ 2a (A)* O £  ̂ e ^ ^ U n j  (A) dA 
• ' - 7r j=o

The first term can be analyzed by setting <; (A) =  (A) 0 (e ,A) € Li  [—n, 7r] and applying

the proof of Lemma (A.2). Next look at a typical element k of the second term
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E \/n  

=  E n ~ 1 /2

t if  <p 1 (eiA) u E (-A) n 1/2 ^ 2
J - *  V '  j^o  ak+i

f n ^  ' P  V '  tE E E E ^ ^ - t - S r
J ~ K j= 0  1=0 r= l 1=1 k+ ]

Then for j ,  Z, m, and r  fixed such that 1 < r  — k + m < n

rr f*  V '' ‘Pj^Pl , \ -E \  > et (er-i -  en-i+r) e
| J —TT «fc+J

IA r
E  V ]  —— et (er- i  -  en- l+r) /  e

| t_l a fc+j V-ir

E  |£r—k—j (£r—l £n—/+r)|

(E  |err_A:_jerr_z [ +  S' |er-fc-j£i

/  1/2 . 1/2 \
(“ zlfc-j + “ n-Z-fc-j J •

Tpjlpl
<*k+j

Tpjtpl
a k + j

'Pj'Pl
a fc+i

Now summing over j ,  Z, m gives

£v/n  [  ip fe lAW ( A ) n  1/2
i=o

j= 0  i= 0  1 fc+J 1

^  0 1/2 - 1 / 2 V ' ^ I ^ 1< sup2afc'  n '  L L b “
fc j= 0  1=0 1 fc+J

0.
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,-«aU+k)Un j  (A) dX 

t_i+r) e - iA(fc+J- r+£)dA .

i X ( k + j - r + t ) ^  

i X ( k + j - r + t ) cj ^

i-l+rl)

tAjZ7n, (A) c (A) dX
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This holds true for all k  =  1, ...,p. Next consider

Ey/n\  P  Ril { -X)R^(X)dX
| */—7T

=  li,(X)4>{e-iX) l ^ l ( - \ ) R i ( X ) d X

+ E \/n r  R ln (-A) n - 1/ 2 x ;  -Z i-e -tW + V U n j (A) dA
J - 1r a3+k

such that the first term goes to zero by the proof of Lemma (A.2). The second term then

is

r  R ln (—A) n ~ 1' 2 Y  - i - e - iXU+k)Un j  (A) dA 
J-*  JZo a i+k

< En-V* f  f ' f 'M L e -™ + * )u „ J(-\)Un,i (\)
1=0 j = 0 a J+ k

/TT OO OO

E E
•7T ;  n „• n1=0 j = o

OO

<*j+k
E\Un,i  ( A)| \Un,j (^)l dA

< n - '»  r ( E \ u n,t w i 2) i/2 j :  - ^ i ( E w „ , ,m \2) m
1=0 j =0 J+fcI

< n - 1/2
, . * • 0 0  OO

/ 53 mi 111111 (*’n)1/2]C
•'-,r /=0 i=0 '

i ’j
<Xj+k

min (j , n) ̂ 2 dA —► 0.

The remaining terms can be shown to go to zero by the same arguments and the proofs 

are omitted. This completes the proof of the proposition ■

Next we turn to the proof of adaptiveness. Before proving the main results a few useful 

lemmas are obtained

Lem m a C .l .  P  (|m indj (<£) m inaj (0O)| >  cn~l/2+l')  =  1 forsomeO < u < 1/2 and some 

c > 0.
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P roof. From Assumption (FI) we know that minaj (d>0) > a > 0. Also by definition 

ctj ((f>) > d„, for all j  =  1 , n. The result follows from the definition of dn. ■

Lem m a C .2 . Let yt =  Y ^ o ^ j £t-j with et satisfying assumptions (FI, Gl) and yt ob­

served for t =  1 , n. De&ne T  = 2n -  1, XSj =  where the integers Sj are indexed by 

an index j ,  Sj € { 0 , 1 , T} and

Vt =
yt for f =  1, ...,n 

0 for t =  n 4-1, ...,T

Then

T  2 2 3 * "  5 3  ) ' " UJv (-^Sfc-i) u v (  2 3  Xsi )  exP ( i  5 3  Xsj ^j) (C--)
S l  =  l S f c _ l  = l

is bounded in probability.

Proof. By Chebychev’s inequality it is enough to show that the variance of (C.2) is 

bounded.

var T  2 ^  • • • 2 3  o>y (ASl) • • • uiy ( £  \ Sj j  exp ( i  2 3  xsj tj^
*1 =  1 «fc-l = l

T - 2k+ink Y  exp ( i  2 3  exp ( - i  2 3
si = l S2fc_2=l

(A Sl) ■ ■ - LtJy ( 2 3  ^Sj j  ,Uy sk) •■•Uy ( 2 3  ^j+fc- l ) ]XCOV (C.3)
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where we used cjy (A) =  (T /n )1̂ 2 uiy (ASl) . The covariance term is evaluated as

£ 1 1  cum (uy (XSj) ; j  G Vi)
v  v j €  v

where the sum is over all indecomposable partitions of the table

u y ( ^ * 1 ) ‘ ' u y (^sfc-i) u y (5Z ^ s j)

Uy (^sk) Uy (As 2 k —2 )

and j  E Vi if u>y (XSi) is an element of the set Vi of partition v.  The notation cum (ojy (ASj) ;  j  E 

is short hand for the cumulant of all the elements in set t>,- of partition v. (See Brillinger 

[14, p. 20] for details). From Brillinger [14, theorem 2.8.1 and 4.3.1] we have

cum (ojy (Xs .) - j  E Vi)

=  (27r)#Ui-1 n -#Ui/2A(r) X3j {j E t>i}) f y...y (ASj;j  E v j  + 0

where #  stands for cardinality and (A) =  £  elXt. Substituting back into (C.3) leads 

to

r _2fc+i j -  £  exp (i ^  XSjt ^  exp ( - i  ^  A ( C . 4 )
Sl =  l  * 2 fc- 2  =  l

* £ I I  [(2’r)#w_1Am (23A,,0'£uj})4 .,#(AJjijS u j)+O(l( .
v v j € v

Since the XSj ^  OmodT the largest number of combinations ^  XSj {j  E u,} =  OmodT is 

k. The error term is at most of order 0 ( n k~l) in which case the number of sums is reduced
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to A: — 1. Therefore

[ J  [ (2 7 r )^ -1A(r ) ( ^ A s . { j € i ; i} ) / J/...y (As . ; j e ^ ) + C > ( l ) ]  = 0 ( T k) (C.5)
Vj£v

for all partitions v  and | / y...y (ASj; j  G | is bounded because of assumption (G l). If 

(C.5) is of order T k then the i \ Sj appear in complex pairs reducing the number of outer 

summations by half such that for these terms (C.4) is 0(1). If (C.5) is of order T k~l then 

the summation runs over k — 2 + 1 terms such that the order of (C.4) is 0 ( T ~ l ). Together 

these results imply that (C.3) is 0(1) ■

Lem m a C .3. Let yt = YlJLo ^ j ^ - j  with £t satisfying assumptions (FI, Gl)  then for any 

integers t j . . .  tk -i  G (1,..., n — 1}

n

^ 2  y tyt-t i • • • yt-tk
£ = m a x ( t i , . . . , £ f c _ l )

_  T 2 + 1 ^ . . .  ^2  Vy (ASJ  ' ' 'My (A3fc_ t ) U)y (y~^ ASj)
s 1=1 5fc_l=l

x exp (i J 2  x sj+k- i t j )  +  Op ( V 1/2)

where the error is uniform in t \ , ....

P roof. From Brillinger [14, lemma 3.6.2] it follows that

n

^   ̂ ytyt—ti ■ ■ 'yt - tk-1

£ = m a x ( £ i , . . . , £ fc_ i )

T  T

= T ^ +1 J 2 ' "  5Z  UJy ( Xs i ) - - - ^ y { Y ^ Xai ) eKp{i J 2 XsJti )
s i = 0  s fc_ i = 0
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so it remains to be shown that

k  T  T

£  £  ■ • • £  wj ( A . , )  • • -Wj (A „„) (C.6)
Z=1 sm =0,rw£l

Xwy (Asf+1) ■■ - My ( y   ̂ASj. j  u/y (0) exp ^  A

=  O p^n"1/2) .

This argument can be applied recursively to obtain expressions where 1,2, ...A: different ASj 

are zero. Here only the first step of the recursion is discussed since the others follow from 

the same argument. The recursion stops at k where (C.6) reduces to

r ~‘+1 £  ' £ » , • " » ,  = oP (r-*+1) .

Now for the first step (C.6) can be written as

r l E ^ E E ' " E wv C M - ' - w y  (as,_j
Z=1 sm = 0 ,m ^ i

X V y  (ASI+1) • • - S7y ( 5 3  A^ )  e x P  (*  5 3  •

The inner summation is again split into a part which involves only ASm > 0 and a part 

with zero terms. Then by Lemma C.2 and because the summation is now only A: — 1 fold

T  2 5 3 ' ' '  5 3  u ii ( A« i )  ‘ ' '  u y  ( A^ i - i )
sm=l,m #Z

xuiy (AS(+l) • • -uiy ^^ 3  Asj j  exp 5 3  A«j-i

=  Op(n-1/2).
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Also by a standard CLT T ~ l =  Op (n-1/2) so that all terms with only one XS] =  0 

are Op (n-1/2) . All other terms are of lower order. The argument in the proof of C.4 can 

then be used to show that the result holds uniformly over i i , .... tk-i- ■

The next lemma establishes uniform convergence of the estimates d; (0) .

L em m a C .4. For any e >  0 there exists some S, 77 > 0 such that

lim P  ( sup m axn1/2 |dj (0) — &i (0 O)| > rj I < e
n^°°  \<t>GNe(.<t>o) 1 J

P ro o f. We first show that the result only needs to be established for the untruncated 

estimator a z* (0 ). Define the set An = |u ; € sup^ N 6{<t>0) m*n( la r (0)1 >  } and let

be the complement of A n

l i m P  sup m axn1/ 2 |dz (0 ) — a* (0 O)| > 77
B~ ° °  \<t>eNs(<t>0) 1 J

< lim P  ( sup m axn1/ 2 |d* (0) — a* (0o)| > 77, A„
n^ ° °  \<t>eN6(<t>0) 1 J

+ lim P  I sup maxTi1/ 2 |d/ (0) -  a; (0O)| > 77, A£
n^°° \<peNs(4>0) 1 J

< lim P  ( sup m axn1/ 2 |a? (0) — a; (0O)| > 77 I -t lim P  (A£)
n~ 0° \<t>eNs{<t>Q) < J n-*°°

where the second inequality uses the fact, that d; (0 ) =  a z* (0 ) on the set where min* \aj (<p)| >

dn. Yet |<5| < |a; (0O)| <  |az* (0) — a; (0o)| +  K* (0)1 so ^ a t  limn_ooP(A£) —► 0 follows from 

max* |az* (0) -  at (0O)| 0. Define t/_u  =  (yt- 1 , . . .  , 2/t-p) • Then

sup max |a* (0 ) — ct; (0 O)| =  sup max 
<t>£Ns(<t>0) 1 <f>eNs(4>o) 1

129

“  y i £t (0 )2ff£- '  (0)2 - ai (0o)n 1'

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Using £t (0) =  £t (0o) +  (0 “  0o) (yt- 1 , — ,yt-p) and collecting terms leads to

n 1/2 sup max 
4>&N6{4>0) 1

-  Y 'e ?  (<t>o) £t-i (<l> o) +  2et (0O) £t-i (<t> o) (0 -  0o) y-i,t n *—'

+  [(0 -  (̂ o)/ y-i,t] (0o) +  2 ( 0  -  0o)" y -i,t-i£ t-i (<Po) £? (<t>o)

+4 [(0 -  <t>0)' y - i,t et (0O) et-i (0o)

4-2 (0 -  0O) y - i 't-j£ t-i (0o) [(0 -  0o) y - u  +  [(0 -  0O) y -i,t-t £t (<Po) +

r ' i 2 +2 ( 0  — 0O) y~i,t£t (0o) [ (0 -0 o )  y -i,t-i

2 r - i 2
(0 - 0 o) y-i,£ ( 0  — 0o) y -i,t-t - M 0 o )

Now from the Cauchy-Schwartz inequality

( 0 - 0 o )  y - u  < ( 0 - 00) (0 - 0 o ) y - i , t y - u

and the fact that

sup (0 -  0O)' (0 -  0Q) =  <52
<t>€Ns(<j>0)

the above expression is dominated by

< max-  i n  1/2]T e ? (0 o)4_/(0o) — oti (0o)|

+«52 max n -1/2 V  y'_u y - i ,t£t-i (0o) +  J/-i,£-i2/-U-£e£ (0d)J I

+ 4y-i,ty-i,t-i£t (0o) £■£-/ (0o)

4-<52 sup n_1/2 V '2 ( 0 - 0 o), y_i,t_z££-z(0o)y-i,ty-i,£
<t>€Ns(4>o)

4-2e£ (0O) (0O) (0 -  0o)( y-i,t +  2 (0 -  0o) y -i,t- is t- i  (0o) £t (0o)

(C.7)
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+  2  (^ -  4>q) y~i,t£t (<Po) y '-u -W - u - i  

-h52 max n ~ 1/2'^2y'_hty -u y - i , t - iy -h t- i

From

sup
tp€Ns(tt> 0)

=  sup 
0€ATs(0o)

S SE

n  1/2 S  &  ~ y - u - j t t - i  (^o) y -x jtu -u
t
n p

n ~ 1/2 5 2 5 2  b f l )  y t - i - i Z t - i  (<p0) y ' - u y - u t
t i

n

n _1/2  5 2 y t- l- i£ t~l M»)

all the terms in (C.7) multiplied by 82 are of the form \n~1̂ 2 Y^tyt- t iyt- t2 yt-t3£t\ with 

the number of et terms varying from one to three. The indices £i, £2 , £3 are of general 

form ti (/) = I + Ci or U (I) =  Ci where the dependence on I will be dropped for notational 

convenience. It is important to point out that in all the fourth moment expressions there 

is always at least one term which does not depend on Z. It remains to establish that these 

terms are Op (1 ) uniformly in £1, £2, £3 as a function of /. From Lemma (C.3) and Brillinger 

[14, theorem 2.8.1 and 4.3.1] it follows that

n 1/25 2 yt- t' yt- t*yt- ta£t
t= 1

=  £  ■ ■ ■ £ > j  (A.,) - - u ,  (AS3 )u/j ( £  A,,)
Sl  =  l  S 3 = l

x exp (i  ^  XSj t Ĵ +  Op (n-1)
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where the error is uniform in £1 , £2 , £3 - Then by the arguments in the proof of Lemma (C.2)

var  1 /2  5 ^ y t_ £lyt_t2yt_t3££ j

T  T

=  (*X]Aŝ ) exp(_zS AsJ+3^) (C'8)
*1 = 1 $2fc—2=1

x S  II [(27r)9_1 A(T) QC a*> 0’6 u*}) (Asi;i e uO + 0 (!)]
u u,€u

where the summation runs over all indecomposable partitions of the table

w y ( A s i )  ^ ( A ^ )  w y ( A s 3 )  ( 5 ! Z  As>)  

^ y  ( A s 4 )  ^yi^ss)  W y ( - ^ S 6 )  u ; e ( X ^ A s > + 3 )

and fxi...xq (A3j ; j  G u*) is the g-th order cmnulant of the variables xy. xy denotes the 

variable associated with entry j  in the above table if j  G u,-. From Brillinger [14, theorem 

2.8.1] fxi...xq (ASj; j  G Uj) can be expressed in terms of the cumulant spectrum of e£. Let 

C(A) =  and assume w.l.g. that the y-variables are numbered 1, ... ,6 then

6

fx  1...is (As p j  6  Vi) ~  fe...e (Ast , • - •, AS7) (A3j) {j  S Oj} •
i = l

From

lim P ( m axn 1/,2sup |az* (<£) — a £ (0o)| > 77 ]
n - »  0 0  Y  1 J

n
< 5 ^  -P (n~ 1/2 sup la,* (0 ) -  a/ (0 O)| > 77)

r a - o o

n

-  „ li ^ o  E var (n_1/2 5Z ( £ ‘  £ t ~ i ^  ~  ai ^ ))
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n 4

+  ‘L” E E i,or hn—»oo <Z i \  £=1 m=l

where the sum in the last line is over all terms appearing in or* (0 ) except s 2 (0 O) c2_; (0 O) 

and C771’1 (L ) = C  (L ) if the m-th term is yt-tm Cm'x (L ) =  1 if the m-th term is £t-tm-

The result now follows if

n /  n 4 \
l̂im  ̂Y i  var I n~ l/2 Y  C 71'1 (L ) e£_£m j < oo, Vi 

n_,°° z \  t= i m=l /

and
n

J E T  war ( n -1/2 (e? (0O) e?-/ (<£o) ~  a i ( < M ) )  <  °°-
n->oc z=i

However from (C.8 ) we have

n /  n 4 \
] T  uar n 1/2 J J  C771’7 (L) £t- tm I

Z \  t= l m=l J

= n ^ T " 6 ] T  • • • Y  ^ v ( i Y Xsi tj ) ^ >( r i l l X3^ )  (C-9)
Z = 1  S i = l  S 2 fc -2  =  1

x ji n [(27r)<7_i a(t) (h x*i &e g u0+° o-) •
t> VjSv

The higher order cumulant spectra are defined in terms of higher order cumulants in the 

following way

f xi...xq (ASj; j  € Vi) =  (2 ?r) _ 9 + 1  exp ( - i ^ U r A r )
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where in 53ur-V we assign each Ui to one ASj. Now substituting back intoC.9 leads to

=  Qr,....Y  A(T)( H Â )
/ = 1  v  ( t / j € u  U t . - . - . u ,  Sj;j€Vi

x exp i Y  [(Ur - t r ) { r < 3 }  + (Ur + tr) {r > 3}] ASr) ] +  O (T 6) }
n

=  n  f a j 6 u<)+ 0 (1 ) •

/ = !  v v j£v

The last line follows from the fact that each A ^  (53 As,-) which is nonzero puts an ad­

ditional restriction on the ASj. The maximal number of sets in a partition is k. If in the 

largest partition all k  — 1 restrictions are valid then the k-th  restriction is automatically 

satisfied as well since always 53y=i ASj =  Asfc • As a consequence the number of summations 

is reduced to k — 1 while k  terms of the form (53 ASj) are equal to T. Therefore the 

leading term of the product is O (T2fc_1) . The O (T6) error term comes from multiplying 

out the product in (C.9). Keeping in mind the dependence of tj on I we can now state 

that

ES n Ki eui)I
1=1 v Vj€v

71 0 0

— n  \cxi’- 'xi (tj ' j   ̂ u«)i—Y j  n  (tj-j   ̂ ui)i < °°
v VjGv [=1 v Vj&u l=\

The same argument can be applied to the remaining terms in (C.7). Also

var (n  1 /2  Y et (<M et-i (<h) ~ a i (<£o)) =  0  C1)

uniformly in I by the same argument. Then again the above argument can be applied to
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show that we can sum over I ■

P ro o f o f P ro p o sitio n  9.1 For the first part of the proposition we have to show that 

for any 77, e > 0

lim P  ( sup lift* -  h(<pQ, \ )
n-*°° V Ae[—jt,7t] II v '

> 7 /  <  £ .

This holds if there is a 6 and a neighborhood Ng ((f)0 ) of <f>0 such that Ng (<p0) is contained 

in the interior of the stationary region of the parameter space and

lim P  I sup sup 
"-*00 V Ae[—jr.ir] «eiV*(«o)

hn ((f), A) -h((f>0, A) >  77 j + (<?> i  -v <5 (0o)) < e-

Then consistency implies P  (̂ f) € N$ (<po)) —*• 1 so that only the first term needs to be 

considered. From

|M <p,A) — h((p0, \ )

= ||Re (A) <f> (e "a ) ] -  Re [/*,„ (A) (f>0 (e~iX^ '

(A) <f> (e " lA) -  l^o  (A) (f>0 (e~iX) || +  \  ||Aa (-A) </> (etA) -  /*,„ (-A) <p0 (e‘A)

and

l-ip (A) 4> ( e_tA) — ^ , 0  (A) (f)0 ( e_*A) 

h  (A) -  h fi  (A) I |(f, (e - iA) | +  11̂ ,0 (A) || |<f> (e - iA) -  J>Q ( e - A)
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it is enough to show that supA s u p ^ ^ ^  (A) -  Ẑ i0 (A) [| =  op (1), while \o (e,A) -  0O (e,A) [ < 

7 7 /2  on Ng (0O) by uniform continuity of 0O (e,A) on [—7r,7r]. Now

sup sup
A e[-7 T ,7 r]  0<=/V4 ( 0 o )

I t / ;  ( A )  ^ t / ; , 0  ( ^ )

=  sup sup 
A <£€/V4(0o)

< sup sup 
A 0 € /V 4 ( 0 o )

n—p— 1 o o

£  a j ( 0 ) -16, (0) e - lAj -  (0O)_1 bj (0O) e-,Aj
i = i  i = i

n —p —1 n—p—1
£  d,- (0 ) - 1  b j  ((j>) e-lAj — X  ^  (0 O)-1 6, ( 0 0 ) e - ^ ‘ 
7 = 1  i = i

+  sup
A

X I  M<£o) 1 bj  (<t>o)e 1X3
j > n - p

We note that supA 

o(n-1 /2). Next

E j° |n -P a i(^o) 16, (0o)e lAj < sup,- a ,  (0O) l n 1/2 £ ° | n_pj 1/2 H61 (<?o)ll

sup sup 
A 0€/V4(0q)

< sup sup 
A 0G/V«(0o)

-f sup sup
A 0 G /V 4 ( 0 o )

n —p — 1 n —p — 1

X X a i  (^o)-1 b j  (0O) e - *Aj
j=i j=i

n —p — 1

X  { &j  ( ^ )_1 “  " j  ( ^ o ) '1)  bi  (<t>)
;=i

n—p— 1

X ai(0o)-l(6i(0)-6J-(«0o))c-̂ '
i = l

(C.10)

(C.11)

It is therefore enough to show that (C.10) and (C .ll) go to zero in probability uniformly 

on Ng (00 ) as 6 —► 0. First consider (C .ll) . Let 6,-fc (0) denote the Ar-th element of 6, (0). 

Then the norm can be bounded by

n—p— 1
X a,(0o)-1(6, (0)-6,(0o))e-̂
i = i
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k =  1‘ I ?
P

£ E

n—p— 1

£  a , (0O) " 1 (6iifc (0) -  6itfc (0O)) e_lAj
j'= i

2\ 1/2

n—p—1
£  ay (0O) - L (bjJe (0) -  6,-* (0O)) e - ‘Aj 
3=1

For the fc -th element of the sum we have

sup
A e[-7 T ,7 r]

< sup
A g [ —77,77) 

1

r i r  n - p - 1

f  ^ 2  M 0 o )  l e  l(A 11)5i’hki^y-) -Vk(<t>,n))dn 
J-* J=l

J  e - ^ - ^ 3 (f]k (0, ji) -  ^  (0, /*)) rf/i

+ -T  SUPrr4 A e[-7 T ,7 r]

71—p—1
£  (*** W) -  CA>)) =_£ii
j = l

< sup 
A 6 [.

1

UP r
— 77,77] J — 77

71—p — 1

£  5J (0o) - 1e - i(A- ^
j= l

l*7fc (0,/*) - ^ ( 0 7 / 2 ) 1 ^

+ - j  S U p(T4 A g [ —77,77]

n—p—I
] T  (6ilfc( 0 ) - 6 if* (0o))e -<Aj‘
i = 1

n —P — 1 . /*77

< J ]  |a i(0 o )_1 /  ftfc(0./O-flfc (07/*)!<*/*
j  = —Tl+p+l

1
+ - r  S U p7T4 A g [—77, 77]

71—p — 1

£  (6j,fc (0) — fy.fc (0O)) e~'A:7 
j=i

< Ce(6) + e(n ).

Then 5Z^=f_ 1  “j  (0o) - 1  <  S j l i  “j (0o) _ 1  <  0 0 • By uniform continuity of 77 (0 , /x) on 

[—7r, 7r] xiV^ (0o) we ^ave 1*7 (0! f1) (007 /i)lfc < 6 f°r some 6 > 0 from which it follows that

f - x  ~  17(0O7/i)lfĉ Ai <  27re. Also for 0 G A/fi(0o) the finite Fourier approximation
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of 77 (<p, (x) converges uniformly

sup
A e[-7 T ,7 r]

=  sup
A e [ —JT,7r]

n—p—I
E o))e~iXj
J=i

j= n -p

< sup |^(0 , A) -77(0o,A)|fc +  2 sup E  l6j,*(0)l
Ae[-n-,7r| <t>€Ns(<t>0) J=n_p

OO
< e +  2 sup E  lfej,*(<£)!

4>€Ns(<P0) J=n-p

so that the constant C can be bounded by (2 tt Y l'jL i independent of n

and s u p ^ g ^ ^  Y ^jL n -p  \bj,k (^)l Soes t 0  zero as n —*• 0 0 . Now turn to (C.10) which can 

be analyzed element by element as before

sup sup
A s [ —jt,7t| 4> eN s (<j>0 )

n—p— 1
£  (otj ( « r 1 -  a , (*o)-‘) V  (*) ‘ ~‘Xi
j=1

n—p— 1
< sup sup E — a j  (^0 ) 1 l f e j , i f c  (0)1

A S [—7r,7tj <t>&Ns (<t>0 ) j = 1

n—p—1
sup sup f &j ((f)) l - a j (4>0) E (0 )1  - 

0e^«(0o) i  v

Now supj ^|dy (0) - 1  — a ;- (<̂ o) _ 1  ) < (mind/ ((f>) m ina/ (0o ) ) - 1  max l^t (0) — Q/ (<?>o)I 

suP</>€JV5((*!i0) \bj,k < 0 0  for all n. The result then follows if for any e > 0 there

exists 77,6 > 0  such that

(lim P  I sup (mind/ (<£) mina/ (</>0)) 1 max |d/ (0) — q/ (<p0)| >  77 ) <  e.
n ^ ° °  U e N s t t o )  J
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The probability can be bounded by

P  ( sup n 1,/2 17 max |dj (<p) — ai (d>0) | >  r/ I
\ * e * r s { * o )  1 J

+ P  I sup (mind; (0) mina; (0o))-1 < cn~1̂ 2+u J
\<t>€Ns(tp0) J

The second term is zero by Lemma (C.l) and the first term tends to zero by Lemma (C.4).

It remains to show that P  (p  A), /i (0O, A) j  > <5̂ —* 0. Using the result from

the first part it remains to be shown that su p ^ .^ ,,.]  ||dhn (̂ >n, Â  /dX — dh ((p0, A) / 5 a | |  =  

op (1). Since

A)t

impUes that f] (0, X)k € Ch [—7r, 7r] Vh < oo and dhfj (0, — 7r)fc /dXh =  dhT] (<p, n)k / d \ h such 

that by the Riemann-Lebesgue lemma ^ 2 jh~3̂ 2 \bj\ <  oo or in particular j 3̂ 2 |&y| < oo. 

Also (ij)bj ((j>) =  f  A)) e~tXjdX such that by the Weierstrass Theorem

uniformly on [—7r, 7r] . Using these facts the proof of the first part can be applied to the 

first derivative.

Since {H, p) is a complete metric space P  (̂ p (hn(<f>n, X), h (<pQ, A)j > <5̂ —► 0 implies 

that P  | hn € T~dj —* 1. ■

P ro o f o f T h eo rem  9.2 We start by obtaining an expression for Rn (A) in (9.5). From
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the proof of Lemma (A.2) we have

ujy (A) =  ( T 1 ( e - iA)  (A) + n - V 2 '£ ' i / , j e - iX*Unj  (A)
3=0

Letting (A) =  n  1//2 ,AjUnj  (A) we can write

(A) =  (A) u y (—A)

=  o;y (A) wy ( - A) a (A) <f> 4- a;y (A) a;£ ( -A ) +  w y (A) <j> (ea ) (-A )

=  I n ,yy (A) a (A) 0 +  / n,££ (A) 0 " 1 ( e - fA)  +  a;£ ( -A )  / £  (A)

In the same way we also have

/n,yy(A) =  In,yy (A) a ( -A )  0  +  I n&  (A) 0 " 1 (e‘A) +  u/e (A) R ^  ( -A )

Let

iln (A) =  Re cu£ (A) R i  (—A) +a;£ (-A )  W  +  K  ( " A) f

Next write I^yy  (A) /iq A) for the filter based on the true parameter <pQ as

In,yy (^) (0o> — (^) V̂>,o ( A) 4>q  ̂a ( A)

JrIn.gE (A) 1t/,0 (A) +  ^0 (<Pq, A) iln (A)

<p
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while a filter based on a different parameter 0 is expressed as

In,yy (A) h (0, A) =  In,yy (A) Re [h  (—A) 0  (eiA) a (-A)] 0 

+^n,££ (A) h (0, A) +  h (0, A) iln (A)

with (0, A) =  Re [Ẑ  (—A) 0  (elA) 0Q1 (e,A)] . Then by the proof of Lemma {A.2) it 

follows that \/n  f  Rn (A) c (A) cZA =  op(l) for all continuous c; (A) with absolutely summable 

Fourier coefficients. Next (9.10) is established if for all $ ,e  > 0 there exists a 8 > 0 such 

that

lim sup P  I sup ||un (h) — un (ho) || >  # ) < e 
n->oo yh£H ,p(h,hQ)<6 J

which in turn follows from

lim sup P [  sup s/n /  In,ee (A) (h ^  (0, A) -  lvfi (A)) dA 
n-»oo \heH,p(h,ho)<6 \\J-x I

< 5  (C.12)

and

lim su p P l sup M l  R„, (A) [h — /to] dA 
n —oo \h & 'H ,p (h M )< 6  WJ - n

< £ .

For (C.13) define the open neighborhood

(C.13)

Hs = {h: [—7T, 7r] —► Rp \h € H, p {h, fro) <  <5 } ■

Now for all h € Hs it is the case that s u p ^ ^ ^  \h (A)| < oo which in turn implies absolute 

summability of h. In turn h — ho is also continuous and uniformly bounded such that (C.13)
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follows from the proof of Lemma (A.2).

Next turn to (C.12). The main idea of the proof is taken from Robinson [83] where 

integration by parts is used to separate h from /„ )££ (A).

sup y/n [  /„,££ (A) (h0  (0, A) -  lv,o (A)) dA 
hew* II J-*

< sup y/n I I  [  (/„,££ (A) -  £ /„ ,££ (A)) (/i0Q ((f). A) -  lVt0  (A)) dA
hGHg || d—7T

+  sup y/n f  EIn,ee (A) (h# (0, A) -  0 (A)) dA
hgHfi ||y—7T

Since E In^e (A) =  er2 it follows that the last term is a2 ( h ^  (0, A) — lVto (A)) dA. Now 

note that Ivq (A) dA =  0 and f* v h$Q (0 , A) dA = 0. Next use integration by parts

sup y/n f  (In,E£ (A) E In^e (A)) (0, A) (A)) dA
heKs IIJ-K

/ * d f x
—  (/i0  (0, A) -  Ẑ o (A)) /  (d„,££ (/i) -  £ /„ ,££ (/*)) d^dA

7T dA d_„.

+  sup y/n (Zl0 o (0, 7r) -  1^,0 (tt)) /  (dn.ee (d) ~  ■E'dn,££ (^)) dA
w/—7T

Now both || ̂  (/i0 o (0, A) -  lv ,0  (A)) || and | | ( 0 , 7r) -  Zn>0 (7r)[| are uniformly bounded in 

Tis such that for some constant C < oo

/ v d f x
wr (d0 o (0, A) -  lv,o (A)) / (/„i££ ( î) -  E In^s (fi))d(jd\

■7r  d A  d - 7T

<  C6y/n f  | f  (Int££(fJ,) E In^e (/z))dJdA.
J — IT |d—7T I

It remains to show that y n su p A (Zn.ee (aO — E In<££ (/j.)) d/i| is bounded in probability.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Using Markov’s inequality we look at supA n E  | (In.ee (h) — E In.£E ( h ) )  d/i| 

analyzed by looking at

I f X 2
n E  I  ( I n . e e  ( / 0  E I n . s e  ( / 0 )  d / i  

I -/ —7T
/ Ai /-A2

I  COV ( I n , e e  ( M l )  i d n , £ E  ( / i 2 ) )  d / i i d ^ -

-7T J —7T

From Brillinger [14, theorem 5.10.1]

/A i r  A2

I  COV ( In .e e  ( H i )  1 I n .e e  (/i2)) d /iid /i2
*7T J — TT

=  n_1 [  fee(v)dH  
J —7T

/
Al rA2

J  f e . .e  ( M i,  M2 , - M l )  d fj . id .H2 +  O  ( n ~ 2)

where the error is uniform in A. Then / | e (A) =  rx4 and / e..£ ( /q ,/^ , - Mi ) is 

bounded under assumption (FI). So

I /"A 2sup nE  / (/„iK (/i) -  Eln.ss (m) ) d/i
A U - x

/A r X i  rX .2
/ 2e  ( h )  d / i  +  sup  / / e..e ( / £ X ,  H 2 ,  - H i )  d / i t d / i 2  + -  O  ( n

-x Ai,A2 J —x 7—x

is bounded in the limit as n —► 0 0 .
|2

By the same argument we also prove that n E  (In.ee (m) — EIn.ee ( m ) )  d A  

This completes the proof. ■
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uniformly

l )

is bounded.
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